Abstract:Quantization-aware training (QAT) is essential for deploying large models under strict memory and latency constraints, yet achieving stable and robust optimization at ultra-low bitwidths remains challenging. Common approaches based on the straight-through estimator (STE) or soft quantizers often suffer from gradient mismatch, instability, or high computational overhead. As such, we propose StableQAT, a unified and efficient QAT framework that stabilizes training in ultra low-bit settings via a novel, lightweight, and theoretically grounded surrogate for backpropagation derived from a discrete Fourier analysis of the rounding operator. StableQAT strictly generalizes STE as the latter arises as a special case of our more expressive surrogate family, yielding smooth, bounded, and inexpensive gradients that improve QAT training performance and stability across various hyperparameter choices. In experiments, StableQAT exhibits stable and efficient QAT at 2-4 bit regimes, demonstrating improved training stability, robustness, and superior performance with negligible training overhead against standard QAT techniques. Our code is available at https://github.com/microsoft/StableQAT.
Abstract:Structured pruning and quantization are fundamental techniques used to reduce the size of deep neural networks (DNNs) and typically are applied independently. Applying these techniques jointly via co-optimization has the potential to produce smaller, high-quality models. However, existing joint schemes are not widely used because of (1) engineering difficulties (complicated multi-stage processes), (2) black-box optimization (extensive hyperparameter tuning to control the overall compression), and (3) insufficient architecture generalization. To address these limitations, we present the framework GETA, which automatically and efficiently performs joint structured pruning and quantization-aware training on any DNNs. GETA introduces three key innovations: (i) a quantization-aware dependency graph (QADG) that constructs a pruning search space for generic quantization-aware DNN, (ii) a partially projected stochastic gradient method that guarantees layerwise bit constraints are satisfied, and (iii) a new joint learning strategy that incorporates interpretable relationships between pruning and quantization. We present numerical experiments on both convolutional neural networks and transformer architectures that show that our approach achieves competitive (often superior) performance compared to existing joint pruning and quantization methods.