Abstract:Real-time video segmentation is a promising feature for AI-assisted surgery, providing intraoperative guidance by identifying surgical tools and anatomical structures. However, deploying state-of-the-art segmentation models, such as SAM2, in real-time settings is computationally demanding, which makes it essential to balance frame rate and segmentation performance. In this study, we investigate the impact of frame rate on zero-shot surgical video segmentation, evaluating SAM2's effectiveness across multiple frame sampling rates for cholecystectomy procedures. Surprisingly, our findings indicate that in conventional evaluation settings, frame rates as low as a single frame per second can outperform 25 FPS, as fewer frames smooth out segmentation inconsistencies. However, when assessed in a real-time streaming scenario, higher frame rates yield superior temporal coherence and stability, particularly for dynamic objects such as surgical graspers. Finally, we investigate human perception of real-time surgical video segmentation among professionals who work closely with such data and find that respondents consistently prefer high FPS segmentation mask overlays, reinforcing the importance of real-time evaluation in AI-assisted surgery.
Abstract:The past decade has witnessed a substantial increase in the number of startups and companies offering AI-based solutions for clinical decision support in medical institutions. However, the critical nature of medical decision-making raises several concerns about relying on external software. Key issues include potential variations in image modalities and the medical devices used to obtain these images, potential legal issues, and adversarial attacks. Fortunately, the open-source nature of machine learning research has made foundation models publicly available and straightforward to use for medical applications. This accessibility allows medical institutions to train their own AI-based models, thereby mitigating the aforementioned concerns. Given this context, an important question arises: how much data do medical institutions need to train effective AI models? In this study, we explore this question in relation to breast cancer detection, a particularly contested area due to the prevalence of this disease, which affects approximately 1 in every 8 women. Through large-scale experiments on various patient sizes in the training set, we show that medical institutions do not need a decade's worth of MRI images to train an AI model that performs competitively with the state-of-the-art, provided the model leverages foundation models. Furthermore, we observe that for patient counts greater than 50, the number of patients in the training set has a negligible impact on the performance of models and that simple ensembles further improve the results without additional complexity.
Abstract:Protein-based therapeutics play a pivotal role in modern medicine targeting various diseases. Despite their therapeutic importance, these products can aggregate and form subvisible particles (SvPs), which can compromise their efficacy and trigger immunological responses, emphasizing the critical need for robust monitoring techniques. Flow Imaging Microscopy (FIM) has been a significant advancement in detecting SvPs, evolving from monochrome to more recently incorporating color imaging. Complementing SvP images obtained via FIM, deep learning techniques have recently been employed successfully for stress source identification of monochrome SvPs. In this study, we explore the potential of color FIM to enhance the characterization of stress sources in SvPs. To achieve this, we curate a new dataset comprising 16,000 SvPs from eight commercial monoclonal antibodies subjected to heat and mechanical stress. Using both supervised and self-supervised convolutional neural networks, as well as vision transformers in large-scale experiments, we demonstrate that deep learning with color FIM images consistently outperforms monochrome images, thus highlighting the potential of color FIM in stress source classification compared to its monochrome counterparts.
Abstract:Machine learning (ML) research strongly relies on benchmarks in order to determine the relative effectiveness of newly proposed models. Recently, a number of prominent research effort argued that a number of models that improve the state-of-the-art by a small margin tend to do so by winning what they call a "benchmark lottery". An important benchmark in the field of machine learning and computer vision is the ImageNet where newly proposed models are often showcased based on their performance on this dataset. Given the large number of self-supervised learning (SSL) frameworks that has been proposed in the past couple of years each coming with marginal improvements on the ImageNet dataset, in this work, we evaluate whether those marginal improvements on ImageNet translate to improvements on similar datasets or not. To do so, we investigate twelve popular SSL frameworks on five ImageNet variants and discover that models that seem to perform well on ImageNet may experience significant performance declines on similar datasets. Specifically, state-of-the-art frameworks such as DINO and Swav, which are praised for their performance, exhibit substantial drops in performance while MoCo and Barlow Twins displays comparatively good results. As a result, we argue that otherwise good and desirable properties of models remain hidden when benchmarking is only performed on the ImageNet validation set, making us call for more adequate benchmarking. To avoid the "benchmark lottery" on ImageNet and to ensure a fair benchmarking process, we investigate the usage of a unified metric that takes into account the performance of models on other ImageNet variant datasets.
Abstract:ImageNet, an influential dataset in computer vision, is traditionally evaluated using single-label classification, which assumes that an image can be adequately described by a single concept or label. However, this approach may not fully capture the complex semantics within the images available in ImageNet, potentially hindering the development of models that effectively learn these intricacies. This study critically examines the prevalent single-label benchmarking approach and advocates for a shift to multi-label benchmarking for ImageNet. This shift would enable a more comprehensive assessment of the capabilities of deep neural network (DNN) models. We analyze the effectiveness of pre-trained state-of-the-art DNNs on ImageNet and one of its variants, ImageNetV2. Studies in the literature have reported unexpected accuracy drops of 11% to 14% on ImageNetV2. Our findings show that these reported declines are largely attributable to a characteristic of the dataset that has not received sufficient attention -- the proportion of images with multiple labels. Taking this characteristic into account, the results of our experiments provide evidence that there is no substantial degradation in effectiveness on ImageNetV2. Furthermore, we acknowledge that ImageNet pre-trained models exhibit some capability at capturing the multi-label nature of the dataset even though they were trained under the single-label assumption. Consequently, we propose a new evaluation approach to augment existing approaches that assess this capability. Our findings highlight the importance of considering the multi-label nature of the ImageNet dataset during benchmarking. Failing to do so could lead to incorrect conclusions regarding the effectiveness of DNNs and divert research efforts from addressing other substantial challenges related to the reliability and robustness of these models.
Abstract:Large-scale datasets for single-label multi-class classification, such as \emph{ImageNet-1k}, have been instrumental in advancing deep learning and computer vision. However, a critical and often understudied aspect is the comprehensive quality assessment of these datasets, especially regarding potential multi-label annotation errors. In this paper, we introduce a lightweight, user-friendly, and scalable framework that synergizes human and machine intelligence for efficient dataset validation and quality enhancement. We term this novel framework \emph{Multilabelfy}. Central to Multilabelfy is an adaptable web-based platform that systematically guides annotators through the re-evaluation process, effectively leveraging human-machine interactions to enhance dataset quality. By using Multilabelfy on the ImageNetV2 dataset, we found that approximately $47.88\%$ of the images contained at least two labels, underscoring the need for more rigorous assessments of such influential datasets. Furthermore, our analysis showed a negative correlation between the number of potential labels per image and model top-1 accuracy, illuminating a crucial factor in model evaluation and selection. Our open-source framework, Multilabelfy, offers a convenient, lightweight solution for dataset enhancement, emphasizing multi-label proportions. This study tackles major challenges in dataset integrity and provides key insights into model performance evaluation. Moreover, it underscores the advantages of integrating human expertise with machine capabilities to produce more robust models and trustworthy data development. The source code for Multilabelfy will be available at https://github.com/esla/Multilabelfy. \keywords{Computer Vision \and Dataset Quality Enhancement \and Dataset Validation \and Human-Computer Interaction \and Multi-label Annotation.}
Abstract:Given that a conventional laparoscope only provides a two-dimensional (2-D) view, the detection and diagnosis of medical ailments can be challenging. To overcome the visual constraints associated with laparoscopy, the use of laparoscopic images and videos to reconstruct the three-dimensional (3-D) anatomical structure of the abdomen has proven to be a promising approach. Neural Radiance Fields (NeRFs) have recently gained attention thanks to their ability to generate photorealistic images from a 3-D static scene, thus facilitating a more comprehensive exploration of the abdomen through the synthesis of new views. This distinguishes NeRFs from alternative methods such as Simultaneous Localization and Mapping (SLAM) and depth estimation. In this paper, we present a comprehensive examination of NeRFs in the context of laparoscopy surgical videos, with the goal of rendering abdominal scenes in 3-D. Although our experimental results are promising, the proposed approach encounters substantial challenges, which require further exploration in future research.
Abstract:Although supervised learning has been highly successful in improving the state-of-the-art in the domain of image-based computer vision in the past, the margin of improvement has diminished significantly in recent years, indicating that a plateau is in sight. Meanwhile, the use of self-supervised learning (SSL) for the purpose of natural language processing (NLP) has seen tremendous successes during the past couple of years, with this new learning paradigm yielding powerful language models. Inspired by the excellent results obtained in the field of NLP, self-supervised methods that rely on clustering, contrastive learning, distillation, and information-maximization, which all fall under the banner of discriminative SSL, have experienced a swift uptake in the area of computer vision. Shortly afterwards, generative SSL frameworks that are mostly based on masked image modeling, complemented and surpassed the results obtained with discriminative SSL. Consequently, within a span of three years, over $100$ unique general-purpose frameworks for generative and discriminative SSL, with a focus on imaging, were proposed. In this survey, we review a plethora of research efforts conducted on image-oriented SSL, providing a historic view and paying attention to best practices as well as useful software packages. While doing so, we discuss pretext tasks for image-based SSL, as well as techniques that are commonly used in image-based SSL. Lastly, to aid researchers who aim at contributing to image-focused SSL, we outline a number of promising research directions.
Abstract:Deep Neural Network (DNN) models are increasingly evaluated using new replication test datasets, which have been carefully created to be similar to older and popular benchmark datasets. However, running counter to expectations, DNN classification models show significant, consistent, and largely unexplained degradation in accuracy on these replication test datasets. While the popular evaluation approach is to assess the accuracy of a model by making use of all the datapoints available in the respective test datasets, we argue that doing so hinders us from adequately capturing the behavior of DNN models and from having realistic expectations about their accuracy. Therefore, we propose a principled evaluation protocol that is suitable for performing comparative investigations of the accuracy of a DNN model on multiple test datasets, leveraging subsets of datapoints that can be selected using different criteria, including uncertainty-related information. By making use of this new evaluation protocol, we determined the accuracy of $564$ DNN models on both (1) the CIFAR-10 and ImageNet datasets and (2) their replication datasets. Our experimental results indicate that the observed accuracy degradation between established benchmark datasets and their replications is consistently lower (that is, models do perform better on the replication test datasets) than the accuracy degradation reported in published works, with these published works relying on conventional evaluation approaches that do not utilize uncertainty-related information.
Abstract:Predictions made by deep neural networks were shown to be highly sensitive to small changes made in the input space where such maliciously crafted data points containing small perturbations are being referred to as adversarial examples. On the other hand, recent research suggests that the same networks can also be extremely insensitive to changes of large magnitude, where predictions of two largely different data points can be mapped to approximately the same output. In such cases, features of two data points are said to approximately collide, thus leading to the largely similar predictions. Our results improve and extend the work of Li et al.(2019), laying out theoretical grounds for the data points that have colluding features from the perspective of weights of neural networks, revealing that neural networks not only suffer from features that approximately collide but also suffer from features that exactly collide. We identify the necessary conditions for the existence of such scenarios, hereby investigating a large number of DNNs that have been used to solve various computer vision problems. Furthermore, we propose the Null-space search, a numerical approach that does not rely on heuristics, to create data points with colliding features for any input and for any task, including, but not limited to, classification, localization, and segmentation.