Abstract:Large-scale datasets for single-label multi-class classification, such as \emph{ImageNet-1k}, have been instrumental in advancing deep learning and computer vision. However, a critical and often understudied aspect is the comprehensive quality assessment of these datasets, especially regarding potential multi-label annotation errors. In this paper, we introduce a lightweight, user-friendly, and scalable framework that synergizes human and machine intelligence for efficient dataset validation and quality enhancement. We term this novel framework \emph{Multilabelfy}. Central to Multilabelfy is an adaptable web-based platform that systematically guides annotators through the re-evaluation process, effectively leveraging human-machine interactions to enhance dataset quality. By using Multilabelfy on the ImageNetV2 dataset, we found that approximately $47.88\%$ of the images contained at least two labels, underscoring the need for more rigorous assessments of such influential datasets. Furthermore, our analysis showed a negative correlation between the number of potential labels per image and model top-1 accuracy, illuminating a crucial factor in model evaluation and selection. Our open-source framework, Multilabelfy, offers a convenient, lightweight solution for dataset enhancement, emphasizing multi-label proportions. This study tackles major challenges in dataset integrity and provides key insights into model performance evaluation. Moreover, it underscores the advantages of integrating human expertise with machine capabilities to produce more robust models and trustworthy data development. The source code for Multilabelfy will be available at https://github.com/esla/Multilabelfy. \keywords{Computer Vision \and Dataset Quality Enhancement \and Dataset Validation \and Human-Computer Interaction \and Multi-label Annotation.}
Abstract:Although supervised learning has been highly successful in improving the state-of-the-art in the domain of image-based computer vision in the past, the margin of improvement has diminished significantly in recent years, indicating that a plateau is in sight. Meanwhile, the use of self-supervised learning (SSL) for the purpose of natural language processing (NLP) has seen tremendous successes during the past couple of years, with this new learning paradigm yielding powerful language models. Inspired by the excellent results obtained in the field of NLP, self-supervised methods that rely on clustering, contrastive learning, distillation, and information-maximization, which all fall under the banner of discriminative SSL, have experienced a swift uptake in the area of computer vision. Shortly afterwards, generative SSL frameworks that are mostly based on masked image modeling, complemented and surpassed the results obtained with discriminative SSL. Consequently, within a span of three years, over $100$ unique general-purpose frameworks for generative and discriminative SSL, with a focus on imaging, were proposed. In this survey, we review a plethora of research efforts conducted on image-oriented SSL, providing a historic view and paying attention to best practices as well as useful software packages. While doing so, we discuss pretext tasks for image-based SSL, as well as techniques that are commonly used in image-based SSL. Lastly, to aid researchers who aim at contributing to image-focused SSL, we outline a number of promising research directions.
Abstract:Deep Neural Network (DNN) models are increasingly evaluated using new replication test datasets, which have been carefully created to be similar to older and popular benchmark datasets. However, running counter to expectations, DNN classification models show significant, consistent, and largely unexplained degradation in accuracy on these replication test datasets. While the popular evaluation approach is to assess the accuracy of a model by making use of all the datapoints available in the respective test datasets, we argue that doing so hinders us from adequately capturing the behavior of DNN models and from having realistic expectations about their accuracy. Therefore, we propose a principled evaluation protocol that is suitable for performing comparative investigations of the accuracy of a DNN model on multiple test datasets, leveraging subsets of datapoints that can be selected using different criteria, including uncertainty-related information. By making use of this new evaluation protocol, we determined the accuracy of $564$ DNN models on both (1) the CIFAR-10 and ImageNet datasets and (2) their replication datasets. Our experimental results indicate that the observed accuracy degradation between established benchmark datasets and their replications is consistently lower (that is, models do perform better on the replication test datasets) than the accuracy degradation reported in published works, with these published works relying on conventional evaluation approaches that do not utilize uncertainty-related information.
Abstract:Although the adoption rate of deep neural networks (DNNs) has tremendously increased in recent years, a solution for their vulnerability against adversarial examples has not yet been found. As a result, substantial research efforts are dedicated to fix this weakness, with many studies typically using a subset of source images to generate adversarial examples, treating every image in this subset as equal. We demonstrate that, in fact, not every source image is equally suited for this kind of assessment. To do so, we devise a large-scale model-to-model transferability scenario for which we meticulously analyze the properties of adversarial examples, generated from every suitable source image in ImageNet by making use of two of the most frequently deployed attacks. In this transferability scenario, which involves seven distinct DNN models, including the recently proposed vision transformers, we reveal that it is possible to have a difference of up to $12.5\%$ in model-to-model transferability success, $1.01$ in average $L_2$ perturbation, and $0.03$ ($8/225$) in average $L_{\infty}$ perturbation when $1,000$ source images are sampled randomly among all suitable candidates. We then take one of the first steps in evaluating the robustness of images used to create adversarial examples, proposing a number of simple but effective methods to identify unsuitable source images, thus making it possible to mitigate extreme cases in experimentation and support high-quality benchmarking.