Abstract:Video object segmentation is an emerging technology that is well-suited for real-time surgical video segmentation, offering valuable clinical assistance in the operating room by ensuring consistent frame tracking. However, its adoption is limited by the need for manual intervention to select the tracked object, making it impractical in surgical settings. In this work, we tackle this challenge with an innovative solution: using previously annotated frames from other patients as the tracking frames. We find that this unconventional approach can match or even surpass the performance of using patients' own tracking frames, enabling more autonomous and efficient AI-assisted surgical workflows. Furthermore, we analyze the benefits and limitations of this approach, highlighting its potential to enhance segmentation accuracy while reducing the need for manual input. Our findings provide insights into key factors influencing performance, offering a foundation for future research on optimizing cross-patient frame selection for real-time surgical video analysis.
Abstract:Real-time video segmentation is a promising feature for AI-assisted surgery, providing intraoperative guidance by identifying surgical tools and anatomical structures. However, deploying state-of-the-art segmentation models, such as SAM2, in real-time settings is computationally demanding, which makes it essential to balance frame rate and segmentation performance. In this study, we investigate the impact of frame rate on zero-shot surgical video segmentation, evaluating SAM2's effectiveness across multiple frame sampling rates for cholecystectomy procedures. Surprisingly, our findings indicate that in conventional evaluation settings, frame rates as low as a single frame per second can outperform 25 FPS, as fewer frames smooth out segmentation inconsistencies. However, when assessed in a real-time streaming scenario, higher frame rates yield superior temporal coherence and stability, particularly for dynamic objects such as surgical graspers. Finally, we investigate human perception of real-time surgical video segmentation among professionals who work closely with such data and find that respondents consistently prefer high FPS segmentation mask overlays, reinforcing the importance of real-time evaluation in AI-assisted surgery.
Abstract:Given that a conventional laparoscope only provides a two-dimensional (2-D) view, the detection and diagnosis of medical ailments can be challenging. To overcome the visual constraints associated with laparoscopy, the use of laparoscopic images and videos to reconstruct the three-dimensional (3-D) anatomical structure of the abdomen has proven to be a promising approach. Neural Radiance Fields (NeRFs) have recently gained attention thanks to their ability to generate photorealistic images from a 3-D static scene, thus facilitating a more comprehensive exploration of the abdomen through the synthesis of new views. This distinguishes NeRFs from alternative methods such as Simultaneous Localization and Mapping (SLAM) and depth estimation. In this paper, we present a comprehensive examination of NeRFs in the context of laparoscopy surgical videos, with the goal of rendering abdominal scenes in 3-D. Although our experimental results are promising, the proposed approach encounters substantial challenges, which require further exploration in future research.