Real-time video segmentation is a promising feature for AI-assisted surgery, providing intraoperative guidance by identifying surgical tools and anatomical structures. However, deploying state-of-the-art segmentation models, such as SAM2, in real-time settings is computationally demanding, which makes it essential to balance frame rate and segmentation performance. In this study, we investigate the impact of frame rate on zero-shot surgical video segmentation, evaluating SAM2's effectiveness across multiple frame sampling rates for cholecystectomy procedures. Surprisingly, our findings indicate that in conventional evaluation settings, frame rates as low as a single frame per second can outperform 25 FPS, as fewer frames smooth out segmentation inconsistencies. However, when assessed in a real-time streaming scenario, higher frame rates yield superior temporal coherence and stability, particularly for dynamic objects such as surgical graspers. Finally, we investigate human perception of real-time surgical video segmentation among professionals who work closely with such data and find that respondents consistently prefer high FPS segmentation mask overlays, reinforcing the importance of real-time evaluation in AI-assisted surgery.