Protein-based therapeutics play a pivotal role in modern medicine targeting various diseases. Despite their therapeutic importance, these products can aggregate and form subvisible particles (SvPs), which can compromise their efficacy and trigger immunological responses, emphasizing the critical need for robust monitoring techniques. Flow Imaging Microscopy (FIM) has been a significant advancement in detecting SvPs, evolving from monochrome to more recently incorporating color imaging. Complementing SvP images obtained via FIM, deep learning techniques have recently been employed successfully for stress source identification of monochrome SvPs. In this study, we explore the potential of color FIM to enhance the characterization of stress sources in SvPs. To achieve this, we curate a new dataset comprising 16,000 SvPs from eight commercial monoclonal antibodies subjected to heat and mechanical stress. Using both supervised and self-supervised convolutional neural networks, as well as vision transformers in large-scale experiments, we demonstrate that deep learning with color FIM images consistently outperforms monochrome images, thus highlighting the potential of color FIM in stress source classification compared to its monochrome counterparts.