Abstract:We study the convergence of $q$-learning and related algorithms introduced by Jia and Zhou (J. Mach. Learn. Res., 24 (2023), 161) for controlled diffusion processes. Under suitable conditions on the growth and regularity of the model parameters, we provide a quantitative error and regret analysis of both the exploratory policy improvement algorithm and the $q$-learning algorithm.
Abstract:Recently, numerous preference optimization algorithms have been introduced as extensions to the Direct Preference Optimization (DPO) family. While these methods have successfully aligned models with human preferences, there is a lack of understanding regarding the contributions of their additional components. Moreover, fair and consistent comparisons are scarce, making it difficult to discern which components genuinely enhance downstream performance. In this work, we propose RainbowPO, a unified framework that demystifies the effectiveness of existing DPO methods by categorizing their key components into seven broad directions. We integrate these components into a single cohesive objective, enhancing the performance of each individual element. Through extensive experiments, we demonstrate that RainbowPO outperforms existing DPO variants. Additionally, we provide insights to guide researchers in developing new DPO methods and assist practitioners in their implementations.
Abstract:Preference tuning is a crucial process for aligning deep generative models with human preferences. This survey offers a thorough overview of recent advancements in preference tuning and the integration of human feedback. The paper is organized into three main sections: 1) introduction and preliminaries: an introduction to reinforcement learning frameworks, preference tuning tasks, models, and datasets across various modalities: language, speech, and vision, as well as different policy approaches, 2) in-depth examination of each preference tuning approach: a detailed analysis of the methods used in preference tuning, and 3) applications, discussion, and future directions: an exploration of the applications of preference tuning in downstream tasks, including evaluation methods for different modalities, and an outlook on future research directions. Our objective is to present the latest methodologies in preference tuning and model alignment, enhancing the understanding of this field for researchers and practitioners. We hope to encourage further engagement and innovation in this area.
Abstract:Reinforcement Learning from human feedback (RLHF) has been shown a promising direction for aligning generative models with human intent and has also been explored in recent works for alignment of diffusion generative models. In this work, we provide a rigorous treatment by formulating the task of fine-tuning diffusion models, with reward functions learned from human feedback, as an exploratory continuous-time stochastic control problem. Our key idea lies in treating the score-matching functions as controls/actions, and upon this, we develop a unified framework from a continuous-time perspective, to employ reinforcement learning (RL) algorithms in terms of improving the generation quality of diffusion models. We also develop the corresponding continuous-time RL theory for policy optimization and regularization under assumptions of stochastic different equations driven environment. Experiments on the text-to-image (T2I) generation will be reported in the accompanied paper.
Abstract:Direct Preference Optimization (DPO) has recently emerged as a popular approach to improve reinforcement learning with human feedback (RLHF), leading to better techniques to fine-tune large language models (LLM). A weakness of DPO, however, lies in its lack of capability to characterize the diversity of human preferences. Inspired by Mallows' theory of preference ranking, we develop in this paper a new approach, the Mallows-DPO. A distinct feature of this approach is a dispersion index, which reflects the dispersion of human preference to prompts. We show that existing DPO models can be reduced to special cases of this dispersion index, thus unified with Mallows-DPO. More importantly, we demonstrate (empirically) how to use this dispersion index to enhance the performance of DPO in a broad array of benchmark tasks, from synthetic bandit selection to controllable generations and dialogues, while maintaining great generalization capabilities.
Abstract:This paper aims to develop and provide a rigorous treatment to the problem of entropy regularized fine-tuning in the context of continuous-time diffusion models, which was recently proposed by Uehara et al. (arXiv:2402.15194, 2024). The idea is to use stochastic control for sample generation, where the entropy regularizer is introduced to mitigate reward collapse. We also show how the analysis can be extended to fine-tuning involving a general $f$-divergence regularizer.
Abstract:This is an expository article on the score-based diffusion models, with a particular focus on the formulation via stochastic differential equations (SDE). After a gentle introduction, we discuss the two pillars in the diffusion modeling -- sampling and score matching, which encompass the SDE/ODE sampling, score matching efficiency, the consistency model, and reinforcement learning. Short proofs are given to illustrate the main idea of the stated results. The article is primarily for introducing the beginners to the field, and practitioners may also find some analysis useful in designing new models or algorithms.
Abstract:Diffusion probabilistic models (DPMs) have emerged as a promising technology in generative modeling. The success of DPMs relies on two ingredients: time reversal of Markov diffusion processes and score matching. Most existing work implicitly assumes that score matching is close to perfect, while this assumption is questionable. In view of possibly unguaranteed score matching, we propose a new criterion -- the contraction of backward sampling in the design of DPMs. This leads to a novel class of contractive DPMs (CDPMs), including contractive Ornstein-Uhlenbeck (OU) processes and contractive sub-variance preserving (sub-VP) stochastic differential equations (SDEs). The key insight is that the contraction in the backward process narrows score matching errors, as well as discretization error. Thus, the proposed CDPMs are robust to both sources of error. Our proposal is supported by theoretical results, and is corroborated by experiments. Notably, contractive sub-VP shows the best performance among all known SDE-based DPMs on the CIFAR-10 dataset.
Abstract:We study reinforcement learning (RL) in the setting of continuous time and space, for an infinite horizon with a discounted objective and the underlying dynamics driven by a stochastic differential equation. Built upon recent advances in the continuous approach to RL, we develop a notion of occupation time (specifically for a discounted objective), and show how it can be effectively used to derive performance-difference and local-approximation formulas. We further extend these results to illustrate their applications in the PG (policy gradient) and TRPO/PPO (trust region policy optimization/ proximal policy optimization) methods, which have been familiar and powerful tools in the discrete RL setting but under-developed in continuous RL. Through numerical experiments, we demonstrate the effectiveness and advantages of our approach.
Abstract:We study the convergence rate of continuous-time simulated annealing $(X_t; \, t \ge 0)$ and its discretization $(x_k; \, k =0,1, \ldots)$ for approximating the global optimum of a given function $f$. We prove that the tail probability $\mathbb{P}(f(X_t) > \min f +\delta)$ (resp. $\mathbb{P}(f(x_k) > \min f +\delta)$) decays polynomial in time (resp. in cumulative step size), and provide an explicit rate as a function of the model parameters. Our argument applies the recent development on functional inequalities for the Gibbs measure at low temperatures -- the Eyring-Kramers law. In the discrete setting, we obtain a condition on the step size to ensure the convergence.