Abstract:The development of general robotic systems capable of manipulating in unstructured environments is a significant challenge. While Vision-Language Models(VLM) excel in high-level commonsense reasoning, they lack the fine-grained 3D spatial understanding required for precise manipulation tasks. Fine-tuning VLM on robotic datasets to create Vision-Language-Action Models(VLA) is a potential solution, but it is hindered by high data collection costs and generalization issues. To address these challenges, we propose a novel object-centric representation that bridges the gap between VLM's high-level reasoning and the low-level precision required for manipulation. Our key insight is that an object's canonical space, defined by its functional affordances, provides a structured and semantically meaningful way to describe interaction primitives, such as points and directions. These primitives act as a bridge, translating VLM's commonsense reasoning into actionable 3D spatial constraints. In this context, we introduce a dual closed-loop, open-vocabulary robotic manipulation system: one loop for high-level planning through primitive resampling, interaction rendering and VLM checking, and another for low-level execution via 6D pose tracking. This design ensures robust, real-time control without requiring VLM fine-tuning. Extensive experiments demonstrate strong zero-shot generalization across diverse robotic manipulation tasks, highlighting the potential of this approach for automating large-scale simulation data generation.
Abstract:Weakly supervised object detection (WSOD) aims to classify and locate objects with only image-level supervision. Many WSOD approaches adopt multiple instance learning as the initial model, which is prone to converge to the most discriminative object regions while ignoring the whole object, and therefore reduce the model detection performance. In this paper, a novel cascade attentive dropout strategy is proposed to alleviate the part domination problem, together with an improved global context module. We purposely discard attentive elements in both channel and space dimensions, and capture the inter-pixel and inter-channel dependencies to induce the model to better understand the global context. Extensive experiments have been conducted on the challenging PASCAL VOC 2007 benchmarks, which achieve 49.8% mAP and 66.0% CorLoc, outperforming state-of-the-arts.