Abstract:The semi-airborne transient electromagnetic method (SATEM) is capable of conducting rapid surveys over large-scale and hard-to-reach areas. However, the acquired signals are often contaminated by complex noise, which can compromise the accuracy of subsequent inversion interpretations. Traditional denoising techniques primarily rely on parameter selection strategies, which are insufficient for processing field data in noisy environments. With the advent of deep learning, various neural networks have been employed for SATEM signal denoising. However, existing deep learning methods typically use single-mapping learning approaches that struggle to effectively separate signal from noise. These methods capture only partial information and lack interpretability. To overcome these limitations, we propose an interpretable decoupled representation learning framework, termed DREMnet, that disentangles data into content and context factors, enabling robust and interpretable denoising in complex conditions. To address the limitations of CNN and Transformer architectures, we utilize the RWKV architecture for data processing and introduce the Contextual-WKV mechanism, which allows unidirectional WKV to perform bidirectional signal modeling. Our proposed Covering Embedding technique retains the strong local perception of convolutional networks through stacked embedding. Experimental results on test datasets demonstrate that the DREMnet method outperforms existing techniques, with processed field data that more accurately reflects the theoretical signal, offering improved identification of subsurface electrical structures.
Abstract:The extraction of geoelectric structural information from airborne transient electromagnetic(ATEM)data primarily involves data processing and inversion. Conventional methods rely on empirical parameter selection, making it difficult to process complex field data with high noise levels. Additionally, inversion computations are time consuming and often suffer from multiple local minima. Existing deep learning-based approaches separate the data processing steps, where independently trained denoising networks struggle to ensure the reliability of subsequent inversions. Moreover, end to end networks lack interpretability. To address these issues, we propose a unified and interpretable deep learning inversion paradigm based on disentangled representation learning. The network explicitly decomposes noisy data into noise and signal factors, completing the entire data processing workflow based on the signal factors while incorporating physical information for guidance. This approach enhances the network's reliability and interpretability. The inversion results on field data demonstrate that our method can directly use noisy data to accurately reconstruct the subsurface electrical structure. Furthermore, it effectively processes data severely affected by environmental noise, which traditional methods struggle with, yielding improved lateral structural resolution.