Abstract:Recently, remarkable progress has been made in Unified Multimodal Models (UMMs), which integrate vision-language generation and understanding capabilities within a single framework. However, a significant gap exists where a model's strong visual understanding often fails to transfer to its visual generation. A model might correctly understand an image based on user instructions, yet be unable to generate a faithful image from text prompts. This phenomenon directly raises a compelling question: Can a model achieve self-improvement by using its understanding module to reward its generation module? To bridge this gap and achieve self-improvement, we introduce SRUM, a self-rewarding post-training framework that can be directly applied to existing UMMs of various designs. SRUM creates a feedback loop where the model's own understanding module acts as an internal ``evaluator'', providing corrective signals to improve its generation module, without requiring additional human-labeled data. To ensure this feedback is comprehensive, we designed a global-local dual reward system. To tackle the inherent structural complexity of images, this system offers multi-scale guidance: a \textbf{global reward} ensures the correctness of the overall visual semantics and layout, while a \textbf{local reward} refines fine-grained, object-level fidelity. SRUM leads to powerful capabilities and shows strong generalization, boosting performance on T2I-CompBench from 82.18 to \textbf{88.37} and on T2I-ReasonBench from 43.82 to \textbf{46.75}. Overall, our work establishes a powerful new paradigm for enabling a UMMs' understanding module to guide and enhance its own generation via self-rewarding.
Abstract:This paper delves into the interplay between vision backbones and optimizers, unvealing an inter-dependent phenomenon termed \textit{\textbf{b}ackbone-\textbf{o}ptimizer \textbf{c}oupling \textbf{b}ias} (BOCB). We observe that canonical CNNs, such as VGG and ResNet, exhibit a marked co-dependency with SGD families, while recent architectures like ViTs and ConvNeXt share a tight coupling with the adaptive learning rate ones. We further show that BOCB can be introduced by both optimizers and certain backbone designs and may significantly impact the pre-training and downstream fine-tuning of vision models. Through in-depth empirical analysis, we summarize takeaways on recommended optimizers and insights into robust vision backbone architectures. We hope this work can inspire the community to question long-held assumptions on backbones and optimizers, stimulate further explorations, and thereby contribute to more robust vision systems. The source code and models are publicly available at https://bocb-ai.github.io/.
Abstract:Exponential Moving Average (EMA) is a widely used weight averaging (WA) regularization to learn flat optima for better generalizations without extra cost in deep neural network (DNN) optimization. Despite achieving better flatness, existing WA methods might fall into worse final performances or require extra test-time computations. This work unveils the full potential of EMA with a single line of modification, i.e., switching the EMA parameters to the original model after each epoch, dubbed as Switch EMA (SEMA). From both theoretical and empirical aspects, we demonstrate that SEMA can help DNNs to reach generalization optima that better trade-off between flatness and sharpness. To verify the effectiveness of SEMA, we conduct comparison experiments with discriminative, generative, and regression tasks on vision and language datasets, including image classification, self-supervised learning, object detection and segmentation, image generation, video prediction, attribute regression, and language modeling. Comprehensive results with popular optimizers and networks show that SEMA is a free lunch for DNN training by improving performances and boosting convergence speeds.
Abstract:Semi-supervised learning (SSL) has witnessed great progress with various improvements in the self-training framework with pseudo labeling. The main challenge is how to distinguish high-quality pseudo labels against the confirmation bias. However, existing pseudo-label selection strategies are limited to pre-defined schemes or complex hand-crafted policies specially designed for classification, failing to achieve high-quality labels, fast convergence, and task versatility simultaneously. To these ends, we propose a Semi-supervised Reward framework (SemiReward) that predicts reward scores to evaluate and filter out high-quality pseudo labels, which is pluggable to mainstream SSL methods in wide task types and scenarios. To mitigate confirmation bias, SemiReward is trained online in two stages with a generator model and subsampling strategy. With classification and regression tasks on 13 standard SSL benchmarks of three modalities, extensive experiments verify that SemiReward achieves significant performance gains and faster convergence speeds upon Pseudo Label, FlexMatch, and Free/SoftMatch.
Abstract:Rolling bearings are critical components in rotating machinery, and their faults can cause severe damage. Early detection of abnormalities is crucial to prevent catastrophic accidents. Traditional and intelligent methods have been used to analyze time series data, but in real-life scenarios, sensor data is often noisy and cannot be accurately characterized in the time domain, leading to mode collapse in trained models. Two-dimensionalization methods such as the Gram angle field method (GAF) or interval sampling have been proposed, but they lack mathematical derivation and interpretability. This paper proposes an improved GAF combined with grayscale images for convolution scenarios. The main contributions include illustrating the feasibility of the approach in complex scenarios, widening the data set, and introducing an improved convolutional neural network method with a multi-scale feature fusion diffusion model and deep learning compression techniques for deployment in industrial scenarios.
Abstract:For a considerable time, researchers have focused on developing a method that establishes a deep connection between the generative diffusion model and mathematical physics. Despite previous efforts, progress has been limited to the pursuit of a single specialized method. In order to advance the interpretability of diffusion models and explore new research directions, it is essential to establish a unified ODE-style generative diffusion model. Such a model should draw inspiration from physical models and possess a clear geometric meaning. This paper aims to identify various physical models that are suitable for constructing ODE-style generative diffusion models accurately from a mathematical perspective. We then summarize these models into a unified method. Additionally, we perform a case study where we use the theoretical model identified by our method to develop a range of new diffusion model methods, and conduct experiments. Our experiments on CIFAR-10 demonstrate the effectiveness of our approach. We have constructed a computational framework that attains highly proficient results with regards to image generation speed, alongside an additional model that demonstrates exceptional performance in both Inception score and FID score. These results underscore the significance of our method in advancing the field of diffusion models.