Abstract:Employee attrition poses significant costs for organizations, with traditional statistical prediction methods often struggling to capture modern workforce complexities. Machine learning (ML) advancements offer more scalable and accurate solutions, but large language models (LLMs) introduce new potential in human resource management by interpreting nuanced employee communication and detecting subtle turnover cues. This study leverages the IBM HR Analytics Attrition dataset to compare the predictive accuracy and interpretability of a fine-tuned GPT-3.5 model against traditional ML classifiers, including Logistic Regression, k-Nearest Neighbors (KNN), Support Vector Machine (SVM), Decision Tree, Random Forest, AdaBoost, and XGBoost. While traditional models are easier to use and interpret, LLMs can reveal deeper patterns in employee behavior. Our findings show that the fine-tuned GPT-3.5 model outperforms traditional methods with a precision of 0.91, recall of 0.94, and an F1-score of 0.92, while the best traditional model, SVM, achieved an F1-score of 0.82, with Random Forest and XGBoost reaching 0.80. These results highlight GPT-3.5's ability to capture complex patterns in attrition risk, offering organizations improved insights for retention strategies and underscoring the value of LLMs in HR applications.
Abstract:Automatic speaker verification (ASV) has been widely used in the real life for identity authentication. However, with the rapid development of speech conversion, speech synthesis algorithms and the improvement of the quality of recording devices, ASV systems are vulnerable for spoof attacks. In recent years, there have many works about synthetic and replay speech detection, researchers had proposed a number of anti-spoofing methods based on hand-crafted features to improve the accuracy and robustness of synthetic and replay speech detection system. However, using hand-crafted features rather than raw waveform would lose certain information for anti-spoofing, which will reduce the detection performance of the system. Inspired by the promising performance of ConvNext in image classification tasks, we extend the ConvNext network architecture accordingly for spoof attacks detection task and propose an end-to-end anti-spoofing model. By integrating the extended architecture with the channel attention block, the proposed model can focus on the most informative sub-bands of speech representations to improve the anti-spoofing performance. Experiments show that our proposed best single system could achieve an equal error rate of 1.88% and 2.79% for the ASVSpoof 2019 LA evaluation dataset and PA evaluation dataset respectively, which demonstrate the model's capacity for anti-spoofing.