Abstract:Deep learning for image super-resolution (SR) has been investigated by numerous researchers in recent years. Most of the works concentrate on effective block designs and improve the network representation but lack interpretation. There are also iterative optimization-inspired networks for image SR, which take the solution step as a whole without giving an explicit optimization step. This paper proposes an unfolding iterative shrinkage thresholding algorithm (ISTA) inspired network for interpretable image SR. Specifically, we analyze the problem of image SR and propose a solution based on the ISTA method. Inspired by the mathematical analysis, the ISTA block is developed to conduct the optimization in an end-to-end manner. To make the exploration more effective, a multi-scale exploitation block and multi-scale attention mechanism are devised to build the ISTA block. Experimental results show the proposed ISTA-inspired restoration network (ISTAR) achieves competitive or better performances than other optimization-inspired works with fewer parameters and lower computation complexity.
Abstract:Object detection is a basic and important task in the field of aerial image processing and has gained much attention in computer vision. However, previous aerial image object detection approaches have insufficient use of scene semantic information between different regions of large-scale aerial images. In addition, complex background and scale changes make it difficult to improve detection accuracy. To address these issues, we propose a relationship representation network for object detection in aerial images (RelationRS): 1) Firstly, multi-scale features are fused and enhanced by a dual relationship module (DRM) with conditional convolution. The dual relationship module learns the potential relationship between features of different scales and learns the relationship between different scenes from different patches in a same iteration. In addition, the dual relationship module dynamically generates parameters to guide the fusion of multi-scale features. 2) Secondly, The bridging visual representations module (BVR) is introduced into the field of aerial images to improve the object detection effect in images with complex backgrounds. Experiments with a publicly available object detection dataset for aerial images demonstrate that the proposed RelationRS achieves a state-of-the-art detection performance.
Abstract:Cyber attacks pose crucial threats to computer system security, and put digital treasuries at excessive risks. This leads to an urgent call for an effective intrusion detection system that can identify the intrusion attacks with high accuracy. It is challenging to classify the intrusion events due to the wide variety of attacks. Furthermore, in a normal network environment, a majority of the connections are initiated by benign behaviors. The class imbalance issue in intrusion detection forces the classifier to be biased toward the majority/benign class, thus leave many attack incidents undetected. Spurred by the success of deep neural networks in computer vision and natural language processing, in this paper, we design a new system named DeepIDEA that takes full advantage of deep learning to enable intrusion detection and classification. To achieve high detection accuracy on imbalanced data, we design a novel attack-sharing loss function that can effectively move the decision boundary towards the attack classes and eliminates the bias towards the majority/benign class. By using this loss function, DeepIDEA respects the fact that the intrusion mis-classification should receive higher penalty than the attack mis-classification. Extensive experimental results on three benchmark datasets demonstrate the high detection accuracy of DeepIDEA. In particular, compared with eight state-of-the-art approaches, DeepIDEA always provides the best class-balanced accuracy.