Abstract:Deep generative models have recently made a remarkable progress in capturing complex probability distributions over graphs. However, they are intractable and thus unable to answer even the most basic probabilistic inference queries without resorting to approximations. Therefore, we propose graph sum-product networks (GraphSPNs), a tractable deep generative model which provides exact and efficient inference over (arbitrary parts of) graphs. We investigate different principles to make SPNs permutation invariant. We demonstrate that GraphSPNs are able to (conditionally) generate novel and chemically valid molecular graphs, being competitive to, and sometimes even better than, existing intractable models. We find out that (Graph)SPNs benefit from ensuring the permutation invariance via canonical ordering.
Abstract:Daily internet communication relies heavily on tree-structured graphs, embodied by popular data formats such as XML and JSON. However, many recent generative (probabilistic) models utilize neural networks to learn a probability distribution over undirected cyclic graphs. This assumption of a generic graph structure brings various computational challenges, and, more importantly, the presence of non-linearities in neural networks does not permit tractable probabilistic inference. We address these problems by proposing sum-product-set networks, an extension of probabilistic circuits from unstructured tensor data to tree-structured graph data. To this end, we use random finite sets to reflect a variable number of nodes and edges in the graph and to allow for exact and efficient inference. We demonstrate that our tractable model performs comparably to various intractable models based on neural networks.
Abstract:Daily internet communication relies heavily on tree-structured graphs, embodied by popular data formats such as XML and JSON. However, many recent generative (probabilistic) models utilize neural networks to learn a probability distribution over undirected cyclic graphs. This assumption of a generic graph structure brings various computational challenges, and, more importantly, the presence of non-linearities in neural networks does not permit tractable probabilistic inference. We address these problems by proposing sum-product-set networks, an extension of probabilistic circuits from unstructured tensor data to tree-structured graph data. To this end, we use random finite sets to reflect a variable number of nodes and edges in the graph and to allow for exact and efficient inference. We demonstrate that our tractable model performs comparably to various intractable models based on neural networks.
Abstract:The area under receiver operating characteristics (AUC) is the standard measure for comparison of anomaly detectors. Its advantage is in providing a scalar number that allows a natural ordering and is independent on a threshold, which allows to postpone the choice. In this work, we question whether AUC is a good metric for anomaly detection, or if it gives a false sense of comfort, due to relying on assumptions which are unlikely to hold in practice. Our investigation shows that variations of AUC emphasizing accuracy at low false positive rate seem to be better correlated with the needs of practitioners, but also that we can compare anomaly detectors only in the case when we have representative examples of anomalous samples. This last result is disturbing, as it suggests that in many cases, we should do active or few-show learning instead of pure anomaly detection.
Abstract:Traditional methods for unsupervised learning of finite mixture models require to evaluate the likelihood of all components of the mixture. This becomes computationally prohibitive when the number of components is large, as it is, for example, in the sum-product (transform) networks. Therefore, we propose to apply a combination of the expectation maximization and the Metropolis-Hastings algorithm to evaluate only a small number of, stochastically sampled, components, thus substantially reducing the computational cost. The Markov chain of component assignments is sequentially generated across the algorithm's iterations, having a non-stationary target distribution whose parameters vary via a gradient-descent scheme. We put emphasis on generality of our method, equipping it with the ability to train both shallow and deep mixture models which involve complex, and possibly nonlinear, transformations. The performance of our method is illustrated in a variety of synthetic and real-data contexts, considering deep models, such as mixtures of normalizing flows and sum-product (transform) networks.
Abstract:Deep generative models are challenging the classical methods in the field of anomaly detection nowadays. Every new method provides evidence of outperforming its predecessors, often with contradictory results. The objective of this comparison is twofold: comparison of anomaly detection methods of various paradigms, and identification of sources of variability that can yield different results. The methods were compared on popular tabular and image datasets. While the one class support-vector machine (OC-SVM) had no rival on the tabular datasets, the best results on the image data were obtained either by a feature-matching GAN or a combination of variational autoencoder (VAE) and OC-SVM, depending on the experimental conditions. The main sources of variability that can influence the performance of the methods were identified to be: the range of searched hyper-parameters, the methodology of model selection, and the choice of the anomalous samples. All our code and results are available for download.
Abstract:Accuracy at the top is a special class of binary classification problems where the performance is evaluated only on a small number of relevant (top) samples. Applications include information retrieval systems or processes with manual (expensive) postprocessing. This leads to the minimization of irrelevant samples above a threshold. We consider classifiers in the form of an arbitrary (deep) network and propose a new method DeepTopPush for minimizing the top loss function. Since the threshold depends on all samples, the problem is non-decomposable. We modify the stochastic gradient descent to handle the non-decomposability in an end-to-end training manner and propose a way to estimate the threshold only from values on the current minibatch. We demonstrate the good performance of DeepTopPush on visual recognition datasets and on a real-world application of selecting a small number of molecules for further drug testing.
Abstract:Conventional Neural Networks can approximate simple arithmetic operations, but fail to generalize beyond the range of numbers that were seen during training. Neural Arithmetic Units aim to overcome this difficulty, but current arithmetic units are either limited to operate on positive numbers or can only represent a subset of arithmetic operations. We introduce the Neural Power Unit (NPU) that operates on the full domain of real numbers and is capable of learning arbitrary power functions in a single layer. The NPU thus fixes the shortcomings of existing arithmetic units and extends their expressivity. We achieve this by using complex arithmetic without requiring a conversion of the network to complex numbers. A simplification of the unit to the RealNPU yields a highly interpretable model. We show that the NPUs outperform their competitors in terms of accuracy and sparsity on artificial arithmetic datasets, and that the RealNPU can discover the governing equations of a dynamical systems only from data.
Abstract:Many classification problems focus on maximizing the performance only on the samples with the highest relevance instead of all samples. As an example, we can mention ranking problems, accuracy at the top or search engines where only the top few queries matter. In our previous work, we derived a general framework including several classes of these linear classification problems. In this paper, we extend the framework to nonlinear classifiers. Utilizing a similarity to SVM, we dualize the problems, add kernels and propose a componentwise dual ascent method. This allows us to perform one iteration in less than 20 milliseconds on relatively large datasets such as FashionMNIST.
Abstract:Many binary classification problems minimize misclassification above (or below) a threshold. We show that instances of ranking problems, accuracy at the top or hypothesis testing may be written in this form. We propose a general framework to handle these classes of problems and show which known methods (both known and newly proposed) fall into this framework. We provide a theoretical analysis of this framework and mention selected possible pitfalls the methods may encounter. We suggest several numerical improvements including the implicit derivative and stochastic gradient descent. We provide an extensive numerical study. Based both on the theoretical properties and numerical experiments, we conclude the paper by suggesting which method should be used in which situation.