Abstract:This paper presents a fast and principled approach for solving the visual anomaly detection and segmentation problem. In this setup, we have access to only anomaly-free training data and want to detect and identify anomalies of an arbitrary nature on test data. We propose the application of linear statistical dimensionality reduction techniques on the intermediate features produced by a pretrained DNN on the training data, in order to capture the low-dimensional subspace truly spanned by said features. We show that the \emph{feature reconstruction error} (FRE), which is the $\ell_2$-norm of the difference between the original feature in the high-dimensional space and the pre-image of its low-dimensional reduced embedding, is extremely effective for anomaly detection. Further, using the same feature reconstruction error concept on intermediate convolutional layers, we derive FRE maps that provide pixel-level spatial localization of the anomalies in the image (i.e. segmentation). Experiments using standard anomaly detection datasets and DNN architectures demonstrate that our method matches or exceeds best-in-class quality performance, but at a fraction of the computational and memory cost required by the state of the art. It can be trained and run very efficiently, even on a traditional CPU.
Abstract:This paper introduces anomalib, a novel library for unsupervised anomaly detection and localization. With reproducibility and modularity in mind, this open-source library provides algorithms from the literature and a set of tools to design custom anomaly detection algorithms via a plug-and-play approach. Anomalib comprises state-of-the-art anomaly detection algorithms that achieve top performance on the benchmarks and that can be used off-the-shelf. In addition, the library provides components to design custom algorithms that could be tailored towards specific needs. Additional tools, including experiment trackers, visualizers, and hyper-parameter optimizers, make it simple to design and implement anomaly detection models. The library also supports OpenVINO model optimization and quantization for real-time deployment. Overall, anomalib is an extensive library for the design, implementation, and deployment of unsupervised anomaly detection models from data to the edge.
Abstract:We propose a multimodal approach for detection of students' behavioral engagement states (i.e., On-Task vs. Off-Task), based on three unobtrusive modalities: Appearance, Context-Performance, and Mouse. Final behavioral engagement states are achieved by fusing modality-specific classifiers at the decision level. Various experiments were conducted on a student dataset collected in an authentic classroom.
Abstract:To investigate the detection of students' behavioral engagement (On-Task vs. Off-Task), we propose a two-phase approach in this study. In Phase 1, contextual logs (URLs) are utilized to assess active usage of the content platform. If there is active use, the appearance information is utilized in Phase 2 to infer behavioral engagement. Incorporating the contextual information improved the overall F1-scores from 0.77 to 0.82. Our cross-classroom and cross-platform experiments showed the proposed generic and multi-modal behavioral engagement models' applicability to a different set of students or different subject areas.