Abstract:Natural language has the universal properties of being compositional and grounded in reality. The emergence of linguistic properties is often investigated through simulations of emergent communication in referential games. However, these experiments have yielded mixed results compared to similar experiments addressing linguistic properties of human language. Here we address representational alignment as a potential contributing factor to these results. Specifically, we assess the representational alignment between agent image representations and between agent representations and input images. Doing so, we confirm that the emergent language does not appear to encode human-like conceptual visual features, since agent image representations drift away from inputs whilst inter-agent alignment increases. We moreover identify a strong relationship between inter-agent alignment and topographic similarity, a common metric for compositionality, and address its consequences. To address these issues, we introduce an alignment penalty that prevents representational drift but interestingly does not improve performance on a compositional discrimination task. Together, our findings emphasise the key role representational alignment plays in simulations of language emergence.
Abstract:Humans have clear cross-modal preferences when matching certain novel words to visual shapes. Evidence suggests that these preferences play a prominent role in our linguistic processing, language learning, and the origins of signal-meaning mappings. With the rise of multimodal models in AI, such as vision- and-language (VLM) models, it becomes increasingly important to uncover the kinds of visio-linguistic associations these models encode and whether they align with human representations. Informed by experiments with humans, we probe and compare four VLMs for a well-known human cross-modal preference, the bouba-kiki effect. We do not find conclusive evidence for this effect but suggest that results may depend on features of the models, such as architecture design, model size, and training details. Our findings inform discussions on the origins of the bouba-kiki effect in human cognition and future developments of VLMs that align well with human cross-modal associations.
Abstract:Large language models (LLMs) are applied to all sorts of creative tasks, and their outputs vary from beautiful, to peculiar, to pastiche, into plain plagiarism. The temperature parameter of an LLM regulates the amount of randomness, leading to more diverse outputs; therefore, it is often claimed to be the creativity parameter. Here, we investigate this claim using a narrative generation task with a predetermined fixed context, model and prompt. Specifically, we present an empirical analysis of the LLM output for different temperature values using four necessary conditions for creativity in narrative generation: novelty, typicality, cohesion, and coherence. We find that temperature is weakly correlated with novelty, and unsurprisingly, moderately correlated with incoherence, but there is no relationship with either cohesion or typicality. However, the influence of temperature on creativity is far more nuanced and weak than suggested by the "creativity parameter" claim; overall results suggest that the LLM generates slightly more novel outputs as temperatures get higher. Finally, we discuss ideas to allow more controlled LLM creativity, rather than relying on chance via changing the temperature parameter.
Abstract:Conversational AI systems that rely on Large Language Models, like Transformers, have difficulty interweaving external data (like facts) with the language they generate. Vanilla Transformer architectures are not designed for answering factual questions with high accuracy. This paper investigates a possible route for addressing this problem. We propose to extend the standard Transformer architecture with an additional memory bank holding extra information (such as facts drawn from a knowledge base), and an extra attention layer for addressing this memory. We add this augmented memory to a Generative Adversarial Network-inspired Transformer architecture. This setup allows for implementing arbitrary felicity conditions on the generated language of the Transformer. We first demonstrate how this machinery can be deployed for handling factual questions in goal-oriented dialogues. Secondly, we demonstrate that our approach can be useful for applications like {\it style adaptation} as well: the adaptation of utterances according to certain stylistic (external) constraints, like social properties of human interlocutors in dialogues.
Abstract:Due to the empirical success of reinforcement learning, an increasing number of students study the subject. However, from our practical teaching experience, we see students entering the field (bachelor, master and early PhD) often struggle. On the one hand, textbooks and (online) lectures provide the fundamentals, but students find it hard to translate between equations and code. On the other hand, public codebases do provide practical examples, but the implemented algorithms tend to be complex, and the underlying test environments contain multiple reinforcement learning challenges at once. Although this is realistic from a research perspective, it often hinders educational conceptual understanding. To solve this issue we introduce EduGym, a set of educational reinforcement learning environments and associated interactive notebooks tailored for education. Each EduGym environment is specifically designed to illustrate a certain aspect/challenge of reinforcement learning (e.g., exploration, partial observability, stochasticity, etc.), while the associated interactive notebook explains the challenge and its possible solution approaches, connecting equations and code in a single document. An evaluation among RL students and researchers shows 86% of them think EduGym is a useful tool for reinforcement learning education. All notebooks are available from https://sites.google.com/view/edu-gym/home, while the full software package can be installed from https://github.com/RLG-Leiden/edugym.
Abstract:Current Large Language Models (LLMs) are unparalleled in their ability to generate grammatically correct, fluent text. LLMs are appearing rapidly, and debates on LLM capacities have taken off, but reflection is lagging behind. Thus, in this position paper, we first zoom in on the debate and critically assess three points recurring in critiques of LLM capacities: i) that LLMs only parrot statistical patterns in the training data; ii) that LLMs master formal but not functional language competence; and iii) that language learning in LLMs cannot inform human language learning. Drawing on empirical and theoretical arguments, we show that these points need more nuance. Second, we outline a pragmatic perspective on the issue of `real' understanding and intentionality in LLMs. Understanding and intentionality pertain to unobservable mental states we attribute to other humans because they have pragmatic value: they allow us to abstract away from complex underlying mechanics and predict behaviour effectively. We reflect on the circumstances under which it would make sense for humans to similarly attribute mental states to LLMs, thereby outlining a pragmatic philosophical context for LLMs as an increasingly prominent technology in society.
Abstract:To what degree should we ascribe cognitive capacities to Large Language Models (LLMs), such as the ability to reason about intentions and beliefs known as Theory of Mind (ToM)? Here we add to this emerging debate by (i) testing 11 base- and instruction-tuned LLMs on capabilities relevant to ToM beyond the dominant false-belief paradigm, including non-literal language usage and recursive intentionality; (ii) using newly rewritten versions of standardized tests to gauge LLMs' robustness; (iii) prompting and scoring for open besides closed questions; and (iv) benchmarking LLM performance against that of children aged 7-10 on the same tasks. We find that instruction-tuned LLMs from the GPT family outperform other models, and often also children. Base-LLMs are mostly unable to solve ToM tasks, even with specialized prompting. We suggest that the interlinked evolution and development of language and ToM may help explain what instruction-tuning adds: rewarding cooperative communication that takes into account interlocutor and context. We conclude by arguing for a nuanced perspective on ToM in LLMs.