Abstract:Future multifunction RF systems will be able to not only perform various different radar, communication and electronic warfare functionalities but also to perform them simultaneously on the same aperture. This ability of concurrent operations requires new, cognitive approaches of resource management compared to classical methods. This paper presents such a new approach using a combination of quality of service based resource management and Monte Carlo tree search.
Abstract:In the context of industrially mass-manufactured products, quality management is based on physically inspecting a small sample from a large batch and reasoning about the batch's quality conformance. When complementing physical inspections with predictions from machine learning models, it is crucial that the uncertainty of the prediction is known. Otherwise, the application of established quality management concepts is not legitimate. Deterministic (machine learning) models lack quantification of their predictive uncertainty and are therefore unsuitable. Probabilistic (machine learning) models provide a predictive uncertainty along with the prediction. However, a concise relationship is missing between the measurement uncertainty of physical inspections and the predictive uncertainty of probabilistic models in their application in quality management. Here, we show how the predictive uncertainty of probabilistic (machine learning) models is related to the measurement uncertainty of physical inspections. This enables the use of probabilistic models for virtual inspections and integrates them into existing quality management concepts. Thus, we can provide a virtual measurement for any quality characteristic based on the process data and achieve a 100 percent inspection rate. In the field of Predictive Quality, the virtual measurement is of great interest. Based on our results, physical inspections with a low sampling rate can be accompanied by virtual measurements that allow an inspection rate of 100 percent. We add substantial value, especially to complex process chains, as faulty products/parts are identified promptly and upcoming process steps can be aborted.
Abstract:Machine Learning (ML) has shown significant potential in various applications; however, its adoption in privacy-critical domains has been limited due to concerns about data privacy. A promising solution to this issue is Federated Machine Learning (FedML), a model-to-data approach that prioritizes data privacy. By enabling ML algorithms to be applied directly to distributed data sources without sharing raw data, FedML offers enhanced privacy protections, making it suitable for privacy-critical environments. Despite its theoretical benefits, FedML has not seen widespread practical implementation. This study aims to explore the current state of applied FedML and identify the challenges hindering its practical adoption. Through a comprehensive systematic literature review, we assess 74 relevant papers to analyze the real-world applicability of FedML. Our analysis focuses on the characteristics and emerging trends of FedML implementations, as well as the motivational drivers and application domains. We also discuss the encountered challenges in integrating FedML into real-life settings. By shedding light on the existing landscape and potential obstacles, this research contributes to the further development and implementation of FedML in privacy-critical scenarios.
Abstract:In hostile environments, GNSS is a potentially unreliable solution for self-localization and navigation. Many systems only use an IMU as a backup system, resulting in integration errors which can dramatically increase during mission execution. We suggest using a fighter radar to illuminate satellites with known trajectories to enhance the self-localization information. This technique is time-consuming and resource-demanding but necessary as other tasks depend on the self-localization accuracy. Therefore an adaption of classical resource management frameworks is required. We propose a quality of service based resource manager with capabilities to account for inter-task dependencies to optimize the self-localization update strategy. Our results show that this leads to adaptive navigation update strategies, mastering the trade-off between self-localization and the requirements of other tasks.
Abstract:The disruptive potential of AI systems roots in the emergence of big data. Yet, a significant portion is scattered and locked in data silos, leaving its potential untapped. Federated Machine Learning is a novel AI paradigm enabling the creation of AI models from decentralized, potentially siloed data. Hence, Federated Machine Learning could technically open data silos and therefore unlock economic potential. However, this requires collaboration between multiple parties owning data silos. Setting up collaborative business models is complex and often a reason for failure. Current literature lacks guidelines on which aspects must be considered to successfully realize collaborative AI projects. This research investigates the challenges of prevailing collaborative business models and distinct aspects of Federated Machine Learning. Through a systematic literature review, focus group, and expert interviews, we provide a systemized collection of socio-technical challenges and an extended Business Model Canvas for the initial viability assessment of collaborative AI projects.
Abstract:An intelligent radar resource management is an essential building block of any modern radar system. The quality of service based resource allocation model (Q-RAM) provides a framework for profound and quantifiable decision-making but lacks a representation of inter-task dependencies that can e.g. arise for tracking and synchronisation tasks. As a consequence, synchronisation is usually performed in fixed non-optimal patterns. We present an extension of Q-RAM which enables the resource allocation to consider complex inter-task dependencies and can produce adaptive and intelligent synchronisation schemes. The provided experimental results demonstrate a significant improvement over traditional strategies.
Abstract:Objective: This work proposes a semi-supervised training approach for detecting lung and heart sounds simultaneously with only one trained model and in invariance to the auscultation point. Methods: We use open-access data from the 2016 Physionet/CinC Challenge, the 2022 George Moody Challenge, and from the lung sound database HF_V1. We first train specialist single-task models using foreground ground truth (GT) labels from different auscultation databases to identify background sound events in the respective lung and heart auscultation databases. The pseudo-labels generated in this way were combined with the ground truth labels in a new training iteration, such that a new model was subsequently trained to detect foreground and background signals. Benchmark tests ensured that the newly trained model could detect both, lung, and heart sound events in different auscultation sites without regressing on the original task. We also established hand-validated labels for the respective background signal in heart and lung sound auscultations to evaluate the models. Results: In this work, we report for the first time results for i) a multi-class prediction for lung sound events and ii) for simultaneous detection of heart and lung sound events and achieve competitive results using only one model. The combined multi-task model regressed slightly in heart sound detection and gained significantly in lung sound detection accuracy with an overall macro F1 score of 39.2% over six classes, representing a 6.7% improvement over the single-task baseline models. Conclusion/Significance: To the best of our knowledge, this is the first approach developed to date for measuring heart and lung sound events invariant to both, the auscultation site and capturing device. Hence, our model is capable of performing lung and heart sound detection from any auscultation location.
Abstract:Applying new computing paradigms like quantum computing to the field of machine learning has recently gained attention. However, as high-dimensional real-world applications are not yet feasible to be solved using purely quantum hardware, hybrid methods using both classical and quantum machine learning paradigms have been proposed. For instance, transfer learning methods have been shown to be successfully applicable to hybrid image classification tasks. Nevertheless, beneficial circuit architectures still need to be explored. Therefore, tracing the impact of the chosen circuit architecture and parameterization is crucial for the development of beneficially applicable hybrid methods. However, current methods include processes where both parts are trained concurrently, therefore not allowing for a strict separability of classical and quantum impact. Thus, those architectures might produce models that yield a superior prediction accuracy whilst employing the least possible quantum impact. To tackle this issue, we propose Sequential Quantum Enhanced Training (SEQUENT) an improved architecture and training process for the traceable application of quantum computing methods to hybrid machine learning. Furthermore, we provide formal evidence for the disadvantage of current methods and preliminary experimental results as a proof-of-concept for the applicability of SEQUENT.
Abstract:Reinforcement learning has driven impressive advances in machine learning. Simultaneously, quantum-enhanced machine learning algorithms using quantum annealing underlie heavy developments. Recently, a multi-agent reinforcement learning (MARL) architecture combining both paradigms has been proposed. This novel algorithm, which utilizes Quantum Boltzmann Machines (QBMs) for Q-value approximation has outperformed regular deep reinforcement learning in terms of time-steps needed to converge. However, this algorithm was restricted to single-agent and small 2x2 multi-agent grid domains. In this work, we propose an extension to the original concept in order to solve more challenging problems. Similar to classic DQNs, we add an experience replay buffer and use different networks for approximating the target and policy values. The experimental results show that learning becomes more stable and enables agents to find optimal policies in grid-domains with higher complexity. Additionally, we assess how parameter sharing influences the agents behavior in multi-agent domains. Quantum sampling proves to be a promising method for reinforcement learning tasks, but is currently limited by the QPU size and therefore by the size of the input and Boltzmann machine.
Abstract:The expansion of Fiber-To-The-Home (FTTH) networks creates high costs due to expensive excavation procedures. Optimizing the planning process and minimizing the cost of the earth excavation work therefore lead to large savings. Mathematically, the FTTH network problem can be described as a minimum Steiner Tree problem. Even though the Steiner Tree problem has already been investigated intensively in the last decades, it might be further optimized with the help of new computing paradigms and emerging approaches. This work studies upcoming technologies, such as Quantum Annealing, Simulated Annealing and nature-inspired methods like Evolutionary Algorithms or slime-mold-based optimization. Additionally, we investigate partitioning and simplifying methods. Evaluated on several real-life problem instances, we could outperform a traditional, widely-used baseline (NetworkX Approximate Solver) on most of the domains. Prior partitioning of the initial graph and the presented slime-mold-based approach were especially valuable for a cost-efficient approximation. Quantum Annealing seems promising, but was limited by the number of available qubits.