Abstract:Effective decision-making in automation equipment selection is critical for reducing ramp-up time and maintaining production quality, especially in the face of increasing product variation and market demands. However, limited expertise and resource constraints often result in inefficiencies during the ramp-up phase when new products are integrated into production lines. Existing methods often lack structured and tailored solutions to support automation engineers in reducing ramp-up time, leading to compromises in quality. This research investigates whether large-language models (LLMs), combined with Retrieval-Augmented Generation (RAG), can assist in streamlining equipment selection in ramp-up planning. We propose a factual-driven copilot integrating LLMs with structured and semi-structured knowledge retrieval for three component types (robots, feeders and vision systems), providing a guided and traceable state-machine process for decision-making in automation equipment selection. The system was demonstrated to an industrial partner, who tested it on three internal use-cases. Their feedback affirmed its capability to provide logical and actionable recommendations for automation equipment. More specifically, among 22 equipment prompts analyzed, 19 involved selecting the correct equipment while considering most requirements, and in 6 cases, all requirements were fully met.
Abstract:Machine vision enhances automation, quality control, and operational efficiency in industrial applications by enabling machines to interpret and act on visual data. While traditional computer vision algorithms and approaches remain widely utilized, machine learning has become pivotal in current research activities. In particular, generative AI demonstrates promising potential by improving pattern recognition capabilities, through data augmentation, increasing image resolution, and identifying anomalies for quality control. However, the application of generative AI in machine vision is still in its early stages due to challenges in data diversity, computational requirements, and the necessity for robust validation methods. A comprehensive literature review is essential to understand the current state of generative AI in industrial machine vision, focusing on recent advancements, applications, and research trends. Thus, a literature review based on the PRISMA guidelines was conducted, analyzing over 1,200 papers on generative AI in industrial machine vision. Our findings reveal various patterns in current research, with the primary use of generative AI being data augmentation, for machine vision tasks such as classification and object detection. Furthermore, we gather a collection of application challenges together with data requirements to enable a successful application of generative AI in industrial machine vision. This overview aims to provide researchers with insights into the different areas and applications within current research, highlighting significant advancements and identifying opportunities for future work.
Abstract:Reliably manufacturing defect free products is still an open challenge for Laser Powder Bed Fusion processes. Particularly, pores that occur frequently have a negative impact on mechanical properties like fatigue performance. Therefore, an accurate localisation of pores is mandatory for quality assurance, but requires time-consuming post-processing steps like computer tomography scans. Although existing solutions using in-situ monitoring data can detect pore occurrence within a layer, they are limited in their localisation precision. Therefore, we propose a pore localisation approach that estimates their position within a single layer using a Gaussian kernel density estimation. This allows segmentation models to learn the correlation between in-situ monitoring data and the derived probability distribution of pore occurrence. Within our experiments, we compare the prediction performance of different segmentation models depending on machine parameter configuration and geometry features. From our results, we conclude that our approach allows a precise localisation of pores that requires minimal data preprocessing. Our research extends the literature by providing a foundation for more precise pore detection systems.
Abstract:Causal inference is a fundamental research topic for discovering the cause-effect relationships in many disciplines. However, not all algorithms are equally well-suited for a given dataset. For instance, some approaches may only be able to identify linear relationships, while others are applicable for non-linearities. Algorithms further vary in their sensitivity to noise and their ability to infer causal information from coupled vs. non-coupled time series. Therefore, different algorithms often generate different causal relationships for the same input. To achieve a more robust causal inference result, this publication proposes a novel data-driven two-phase multi-split causal ensemble model to combine the strengths of different causality base algorithms. In comparison to existing approaches, the proposed ensemble method reduces the influence of noise through a data partitioning scheme in the first phase. To achieve this, the data are initially divided into several partitions and the base algorithms are applied to each partition. Subsequently, Gaussian mixture models are used to identify the causal relationships derived from the different partitions that are likely to be valid. In the second phase, the identified relationships from each base algorithm are then merged based on three combination rules. The proposed ensemble approach is evaluated using multiple metrics, among them a newly developed evaluation index for causal ensemble approaches. We perform experiments using three synthetic datasets with different volumes and complexity, which are specifically designed to test causality detection methods under different circumstances while knowing the ground truth causal relationships. In these experiments, our causality ensemble outperforms each of its base algorithms. In practical applications, the use of the proposed method could hence lead to more robust and reliable causality results.
Abstract:In the context of industrially mass-manufactured products, quality management is based on physically inspecting a small sample from a large batch and reasoning about the batch's quality conformance. When complementing physical inspections with predictions from machine learning models, it is crucial that the uncertainty of the prediction is known. Otherwise, the application of established quality management concepts is not legitimate. Deterministic (machine learning) models lack quantification of their predictive uncertainty and are therefore unsuitable. Probabilistic (machine learning) models provide a predictive uncertainty along with the prediction. However, a concise relationship is missing between the measurement uncertainty of physical inspections and the predictive uncertainty of probabilistic models in their application in quality management. Here, we show how the predictive uncertainty of probabilistic (machine learning) models is related to the measurement uncertainty of physical inspections. This enables the use of probabilistic models for virtual inspections and integrates them into existing quality management concepts. Thus, we can provide a virtual measurement for any quality characteristic based on the process data and achieve a 100 percent inspection rate. In the field of Predictive Quality, the virtual measurement is of great interest. Based on our results, physical inspections with a low sampling rate can be accompanied by virtual measurements that allow an inspection rate of 100 percent. We add substantial value, especially to complex process chains, as faulty products/parts are identified promptly and upcoming process steps can be aborted.
Abstract:The advent of AlphaGo and its successors marked the beginning of a new paradigm in playing games using artificial intelligence. This was achieved by combining Monte Carlo tree search, a planning procedure, and deep learning. While the impact on the domain of games has been undeniable, it is less clear how useful similar approaches are in applications beyond games and how they need to be adapted from the original methodology. We review 129 peer-reviewed articles detailing the application of neural Monte Carlo tree search methods in domains other than games. Our goal is to systematically assess how such methods are structured in practice and if their success can be extended to other domains. We find applications in a variety of domains, many distinct ways of guiding the tree search using learned policy and value functions, and various training methods. Our review maps the current landscape of algorithms in the family of neural monte carlo tree search as they are applied to practical problems, which is a first step towards a more principled way of designing such algorithms for specific problems and their requirements.