Abstract:Machine vision enhances automation, quality control, and operational efficiency in industrial applications by enabling machines to interpret and act on visual data. While traditional computer vision algorithms and approaches remain widely utilized, machine learning has become pivotal in current research activities. In particular, generative AI demonstrates promising potential by improving pattern recognition capabilities, through data augmentation, increasing image resolution, and identifying anomalies for quality control. However, the application of generative AI in machine vision is still in its early stages due to challenges in data diversity, computational requirements, and the necessity for robust validation methods. A comprehensive literature review is essential to understand the current state of generative AI in industrial machine vision, focusing on recent advancements, applications, and research trends. Thus, a literature review based on the PRISMA guidelines was conducted, analyzing over 1,200 papers on generative AI in industrial machine vision. Our findings reveal various patterns in current research, with the primary use of generative AI being data augmentation, for machine vision tasks such as classification and object detection. Furthermore, we gather a collection of application challenges together with data requirements to enable a successful application of generative AI in industrial machine vision. This overview aims to provide researchers with insights into the different areas and applications within current research, highlighting significant advancements and identifying opportunities for future work.
Abstract:Reliably manufacturing defect free products is still an open challenge for Laser Powder Bed Fusion processes. Particularly, pores that occur frequently have a negative impact on mechanical properties like fatigue performance. Therefore, an accurate localisation of pores is mandatory for quality assurance, but requires time-consuming post-processing steps like computer tomography scans. Although existing solutions using in-situ monitoring data can detect pore occurrence within a layer, they are limited in their localisation precision. Therefore, we propose a pore localisation approach that estimates their position within a single layer using a Gaussian kernel density estimation. This allows segmentation models to learn the correlation between in-situ monitoring data and the derived probability distribution of pore occurrence. Within our experiments, we compare the prediction performance of different segmentation models depending on machine parameter configuration and geometry features. From our results, we conclude that our approach allows a precise localisation of pores that requires minimal data preprocessing. Our research extends the literature by providing a foundation for more precise pore detection systems.