Abstract:Virtual fixtures assist human operators in teleoperation settings by constraining their actions. This extended abstract introduces a novel virtual fixture formulation \emph{on surfaces} for tactile robotics tasks. Unlike existing methods, our approach constrains the behavior based on the position on the surface and generalizes it over the surface by considering the distance (metric) on the surface. Our method works directly on possibly noisy and partial point clouds collected via a camera. Given a set of regions on the surface together with their desired behaviors, our method diffuses the behaviors across the entire surface by taking into account the surface geometry. We demonstrate our method's ability in two simulated experiments (i) to regulate contact force magnitude or tangential speed based on surface position and (ii) to guide the robot to targets while avoiding restricted regions defined on the surface. All source codes, experimental data, and videos are available as open access at https://sites.google.com/view/diffusion-virtual-fixtures
Abstract:Continuous physical interaction between robots and their environment is a requirement in many industrial and household tasks, such as sanding and cleaning. Due to the complex tactile information, these tasks are notoriously difficult to model and to sense. In this article, we introduce a closed-loop control method that is constrained to surfaces. The applications that we target have in common that they can be represented by probability distributions on the surface that correlate to the time the robot should spend in a region. These surfaces can easily be captured jointly with the target distributions using coloured point clouds. We present the extension of an ergodic control approach that can be used with point clouds, based on heat equation-driven area coverage (HEDAC). Our method enables closed-loop exploration by measuring the actual coverage using vision. Unlike existing approaches, we approximate the potential field from non-stationary diffusion using spectral acceleration, which does not require complex preprocessing steps and achieves real-time closed-loop control frequencies. We exploit geometric algebra to stay in contact with the target surface by tracking a line while simultaneously exerting a desired force along that line. Our approach is suitable for fully autonomous and human-robot interaction settings where the robot can either directly measure the coverage of the target with its sensors or by being guided online by markings or annotations of a human expert. We tested the performance of the approach in kinematic simulation using point clouds, ranging from the Stanford bunny to a variety of kitchen utensils. Our real-world experiments demonstrate that the proposed approach can successfully be used to wash kitchenware with curved surfaces, by cleaning the dirt detected by vision in an online manner. Website: https://geometric-algebra.tobiloew.ch/tactile_ergodic_control
Abstract:In this work, we are presenting an extension of the cooperative dual-task space (CDTS) in conformal geometric algebra. The CDTS was first defined using dual quaternion algebra and is a well established framework for the simplified definition of tasks using two manipulators. By integrating conformal geometric algebra, we aim to further enhance the geometric expressiveness and thus simplify the modeling of various tasks. We show this formulation by first presenting the CDTS and then its extension that is based around a cooperative pointpair. This extension keeps all the benefits of the original formulation that is based on dual quaternions, but adds more tools for geometric modeling of the dual-arm tasks. We also present how this CGA-CDTS can be seamlessly integrated with an optimal control framework in geometric algebra that was derived in previous work. In the experiments, we demonstrate how to model different objectives and constraints using the CGA-CDTS. Using a setup of two Franka Emika robots we then show the effectiveness of our approach using model predictive control in real world experiments.
Abstract:Geometry is a fundamental part of robotics and there have been various frameworks of representation over the years. Recently, geometric algebra has gained attention for its property of unifying many of those previous ideas into one algebra. While there are already efficient open-source implementations of geometric algebra available, none of them is targeted at robotics applications. We want to address this shortcoming with our library gafro. This article presents an overview of the implementation details as well as a tutorial of gafro, an efficient c++ library targeting robotics applications using geometric algebra. The library focuses on using conformal geometric algebra. Hence, various geometric primitives are available for computation as well as rigid body transformations. The modeling of robotic systems is also an important aspect of the library. It implements various algorithms for calculating the kinematics and dynamics of such systems as well as objectives for optimisation problems. The software stack is completed by python bindings in pygafro and a ROS interface in gafro_ros.
Abstract:Generating motion for robots that interact with objects of various shapes is a complex challenge, further complicated when the robot's own geometry and multiple desired behaviors are considered. To address this issue, we introduce a new framework based on Geometric Projectors (GeoPro) for constrained optimization. This novel framework allows for the generation of task-agnostic behaviors that are compliant with geometric constraints. GeoPro streamlines the design of behaviors in both task and configuration spaces, offering diverse functionalities such as collision avoidance and goal-reaching, while maintaining high computational efficiency. We validate the efficacy of our work through simulations and Franka Emika robotic experiments, comparing its performance against state-of-the-art methodologies. This comprehensive evaluation highlights GeoPro's versatility in accommodating robots with varying dynamics and precise geometric shapes. For additional materials, please visit: https://www.xueminchi.com/publications/geopro
Abstract:Robot programming tools ranging from inverse kinematics (IK) to model predictive control (MPC) are most often described as constrained optimization problems. Even though there are currently many commercially-available second-order solvers, robotics literature recently focused on efficient implementations and improvements over these solvers for real-time robotic applications. However, most often, these implementations stay problem-specific and are not easy to access or implement, or do not exploit the geometric aspect of the robotics problems. In this work, we propose to solve these problems using a fast, easy-to-implement first-order method that fully exploits the geometric constraints via Euclidean projections, called Augmented Lagrangian Spectral Projected Gradient Descent (ALSPG). We show that 1. using projections instead of full constraints and gradients improves the performance of the solver and 2. ALSPG stays competitive to the standard second-order methods such as iLQR in the unconstrained case. We showcase these results with IK and motion planning problems on simulated examples and with an MPC problem on a 7-axis manipulator experiment.
Abstract:This paper presents a whole-body robot control method for exploring and probing a given region of interest. The ergodic control formalism behind such an exploration behavior consists of matching the time-averaged statistics of a robot trajectory with the spatial statistics of the target distribution. Most existing ergodic control approaches assume the robots/sensors as individual point agents moving in space. We introduce an approach exploiting multiple kinematically constrained agents on the whole-body of a robotic manipulator, where a consensus among the agents is found for generating control actions. To do so, we exploit an existing ergodic control formulation called heat equation-driven area coverage (HEDAC), combining local and global exploration on a potential field resulting from heat diffusion. Our approach extends HEDAC to applications where robots have multiple sensors on the whole-body (such as tactile skin) and use all sensors to optimally explore the given region. We show that our approach increases the exploration performance in terms of ergodicity and scales well to real-world problems using agents distributed on multiple robot links. We compare our method with HEDAC in kinematic simulation and demonstrate the applicability of an online exploration task with a 7-axis Franka Emika robot.
Abstract:Many problems in robotics are fundamentally problems of geometry, which lead to an increased research effort in geometric methods for robotics in recent years. The results were algorithms using the various frameworks of screw theory, Lie algebra and dual quaternions. A unification and generalization of these popular formalisms can be found in geometric algebra. The aim of this paper is to showcase the capabilities of geometric algebra when applied to robot manipulation tasks. In particular the modelling of cost functions for optimal control can be done uniformly across different geometric primitives leading to a low symbolic complexity of the resulting expressions and a geometric intuitiveness. We demonstrate the usefulness, simplicity and computational efficiency of geometric algebra in several experiments using a Franka Emika robot. The presented algorithms were implemented in c++20 and resulted in the publicly available library \textit{gafro}. The benchmark shows faster computation of the kinematics than state-of-the-art robotics libraries.