https://sites.google.com/view/diffusion-virtual-fixtures
Virtual fixtures assist human operators in teleoperation settings by constraining their actions. This extended abstract introduces a novel virtual fixture formulation \emph{on surfaces} for tactile robotics tasks. Unlike existing methods, our approach constrains the behavior based on the position on the surface and generalizes it over the surface by considering the distance (metric) on the surface. Our method works directly on possibly noisy and partial point clouds collected via a camera. Given a set of regions on the surface together with their desired behaviors, our method diffuses the behaviors across the entire surface by taking into account the surface geometry. We demonstrate our method's ability in two simulated experiments (i) to regulate contact force magnitude or tangential speed based on surface position and (ii) to guide the robot to targets while avoiding restricted regions defined on the surface. All source codes, experimental data, and videos are available as open access at