Abstract:We address the design and optimization of real-world-suitable hybrid precoders for multi-user wideband sub-terahertz (sub-THz) communications. We note that the conventional fully connected true-time delay (TTD)-based architecture is impractical because there is no room for the required large number of analog signal combiners in the circuit board. Additionally, analog signal combiners incur significant signal power loss. These limitations are often overlooked in sub-THz research. To overcome these issues, we study a non-overlapping subarray architecture that eliminates the need for analog combiners. We extend the conventional single-user assumption by formulating an optimization problem to maximize the minimum data rate for simultaneously served users. This complex optimization problem is divided into two sub-problems. The first sub-problem aims to ensure a fair subarray allocation for all users and is solved via a continuous domain relaxation technique. The second sub-problem deals with practical TTD device constraints on range and resolution to maximize the subarray gain and is resolved by shifting to the phase domain. Our simulation results highlight significant performance gain for our real-world-ready TTD-based hybrid precoders.
Abstract:Recently, deep learning approaches have provided solutions to difficult problems in wireless positioning (WP). Although these WP algorithms have attained excellent and consistent performance against complex channel environments, the computational complexity coming from processing high-dimensional features can be prohibitive for mobile applications. In this work, we design a novel positioning neural network (P-NN) that utilizes the minimum description features to substantially reduce the complexity of deep learning-based WP. P-NN's feature selection strategy is based on maximum power measurements and their temporal locations to convey information needed to conduct WP. We improve P-NN's learning ability by intelligently processing two different types of inputs: sparse image and measurement matrices. Specifically, we implement a self-attention layer to reinforce the training ability of our network. We also develop a technique to adapt feature space size, optimizing over the expected information gain and the classification capability quantified with information-theoretic measures on signal bin selection. Numerical results show that P-NN achieves a significant advantage in performance-complexity tradeoff over deep learning baselines that leverage the full power delay profile (PDP). In particular, we find that P-NN achieves a large improvement in performance for low SNR, as unnecessary measurements are discarded in our minimum description features.
Abstract:A recent line of research has been investigating deep learning approaches to wireless positioning (WP). Although these WP algorithms have demonstrated high accuracy and robust performance against diverse channel conditions, they also have a major drawback: they require processing high-dimensional features, which can be prohibitive for mobile applications. In this work, we design a positioning neural network (P-NN) that substantially reduces the complexity of deep learning-based WP through carefully crafted minimum description features. Our feature selection is based on maximum power measurements and their temporal locations to convey information needed to conduct WP. We also develop a novel methodology for adaptively selecting the size of feature space, which optimizes over balancing the expected amount of useful information and classification capability, quantified using information-theoretic measures on the signal bin selection. Numerical results show that P-NN achieves a significant advantage in performance-complexity tradeoff over deep learning baselines that leverage the full power delay profile (PDP).
Abstract:Although user cooperation cannot improve the capacity of Gaussian two-way channels (GTWCs) with independent noises, it can improve communication reliability. In this work, we aim to enhance and balance the communication reliability in GTWCs by minimizing the sum of error probabilities via joint design of encoders and decoders at the users. We first formulate general encoding/decoding functions, where the user cooperation is captured by the coupling of user encoding processes. The coupling effect renders the encoder/decoder design non-trivial, requiring effective decoding to capture this effect, as well as efficient power management at the encoders within power constraints. To address these challenges, we propose two different two-way coding strategies: linear coding and learning-based coding. For linear coding, we propose optimal linear decoding and discuss new insights on encoding regarding user cooperation to balance reliability. We then propose an efficient algorithm for joint encoder/decoder design. For learning-based coding, we introduce a novel recurrent neural network (RNN)-based coding architecture, where we propose interactive RNNs and a power control layer for encoding, and we incorporate bi-directional RNNs with an attention mechanism for decoding. Through simulations, we show that our two-way coding methodologies outperform conventional channel coding schemes (that do not utilize user cooperation) significantly in sum-error performance. We also demonstrate that our linear coding excels at high signal-to-noise ratios (SNRs), while our RNN-based coding performs best at low SNRs. We further investigate our two-way coding strategies in terms of power distribution, two-way coding benefit, different coding rates, and block-length gain.
Abstract:Approximate message passing (AMP) is a scalable, iterative approach to signal recovery. For structured random measurement ensembles, including independent and identically distributed (i.i.d.) Gaussian and rotationally-invariant matrices, the performance of AMP can be characterized by a scalar recursion called state evolution (SE). The pseudo-Lipschitz (polynomial) smoothness is conventionally assumed. In this work, we extend the SE for AMP to a new class of measurement matrices with independent (not necessarily identically distributed) entries. We also extend it to a general class of functions, called controlled functions which are not constrained by the polynomial smoothness; unlike the pseudo-Lipschitz function that has polynomial smoothness, the controlled function grows exponentially. The lack of structure in the assumed measurement ensembles is addressed by leveraging Lindeberg-Feller. The lack of smoothness of the assumed controlled function is addressed by a proposed conditioning technique leveraging the empirical statistics of the AMP instances. The resultants grant the use of the SE to a broader class of measurement ensembles and a new class of functions.
Abstract:Emerging wireless applications are requiring ever more accurate location-positioning from sensor measurements. In this paper, we develop sensor selection strategies for 3D wireless positioning based on time of arrival (TOA) and received signal strength (RSS) measurements to handle two distinct scenarios: (i) known approximated target location, for which we conduct dynamic sensor selection to minimize the positioning error; and (ii) unknown approximated target location, in which the worst-case positioning error is minimized via robust sensor selection. We derive expressions for the Cram\'er-Rao lower bound (CRLB) as a performance metric to quantify the positioning accuracy resulted from selected sensors. For dynamic sensor selection, two greedy selection strategies are proposed, each of which exploits properties revealed in the derived CRLB expressions. These selection strategies are shown to strike an efficient balance between computational complexity and performance suboptimality. For robust sensor selection, we show that the conventional convex relaxation approach leads to instability, and then develop three algorithms based on (i) iterative convex optimization (ICO), (ii) difference of convex functions programming (DCP), and (iii) discrete monotonic optimization (DMO). Each of these strategies exhibits a different tradeoff between computational complexity and optimality guarantee. Simulation results show that the proposed sensor selection strategies provide significant improvements in terms of accuracy and/or complexity compared to existing sensor selection methods.
Abstract:The design of codes for feedback-enabled communications has been a long-standing open problem. Recent research on non-linear, deep learning-based coding schemes have demonstrated significant improvements in communication reliability over linear codes, but are still vulnerable to the presence of forward and feedback noise over the channel. In this paper, we develop a new family of non-linear feedback codes that greatly enhance robustness to channel noise. Our autoencoder-based architecture is designed to learn codes based on consecutive blocks of bits, which obtains de-noising advantages over bit-by-bit processing to help overcome the physical separation between the encoder and decoder over a noisy channel. Moreover, we develop a power control layer at the encoder to explicitly incorporate hardware constraints into the learning optimization, and prove that the resulting average power constraint is satisfied asymptotically. Numerical experiments demonstrate that our scheme outperforms state-of-the-art feedback codes by wide margins over practical forward and feedback noise regimes, and provide information-theoretic insights on the behavior of our non-linear codes. Moreover, we observe that, in a long blocklength regime, canonical error correction codes are still preferable to feedback codes when the feedback noise becomes high.
Abstract:Radio access networks (RANs) in monolithic architectures have limited adaptability to supporting different network scenarios. Recently, open-RAN (O-RAN) techniques have begun adding enormous flexibility to RAN implementations. O-RAN is a natural architectural fit for cell-free massive multiple-input multiple-output (CFmMIMO) systems, where many geographically-distributed access points (APs) are employed to achieve ubiquitous coverage and enhanced user performance. In this paper, we address the decentralized pilot assignment (PA) problem for scalable O-RAN-based CFmMIMO systems. We propose a low-complexity PA scheme using a multi-agent deep reinforcement learning (MA-DRL) framework in which multiple learning agents perform distributed learning over the O-RAN communication architecture to suppress pilot contamination. Our approach does not require prior channel knowledge but instead relies on real-time interactions made with the environment during the learning procedure. In addition, we design a codebook search (CS) scheme that exploits the decentralization of our O-RAN CFmMIMO architecture, where different codebook sets can be utilized to further improve PA performance without any significant additional complexities. Numerical evaluations verify that our proposed scheme provides substantial computational scalability advantages and improvements in channel estimation performance compared to the state-of-the-art.
Abstract:The beam squint effect that arises in the wideband Terahertz (THz) massive multiple-input multiple-output (MIMO) communication produces a serious array gain loss. True-time delay (TTD)-based hybrid precoding has been considered to compensate for the beam squint effect. By fixing the phase shifter (PS) precoder, a common strategy has been designing TTD precoder under the assumption of unbounded time delay values. In this paper, we present a new approach to the problem of beam squint compensation, based on the joint optimization of the TTD and PS precoders under per TTD device time delay constraints. We first derive a lower bound of the achievable rate and show that in the large system limit the ideal analog precoder that completely compensates for the beam squint is equivalent to the one that maximizes the achievable rate lower bound. Unlike the prior approaches, our approach does not require the unbounded time delay assumption; the range of time delay values that a TTD can produce is strictly limited in our approach. Instead of focusing on the design of TTD values only, we jointly optimize both the TTD and PS values to effectively cope with the practical time delay constraints. Taking the advantage of the proposed joint TTD and PS precoder optimization approach, we quantify the minimum number of TTDs required to produce a predefined array gain performance. The simulation results illustrate the substantially improved performance with the array gain performance guarantee of the proposed joint optimization method.
Abstract:We consider linear coding for Gaussian two-way channels (GTWCs), in which each user generates the transmit symbols by linearly encoding both its message and the past received symbols (i.e., the feedback information) from the other user. In Gaussian one-way channels (GOWCs), Butman has proposed a well-developed model for linear encoding that encapsulates feedback information into transmit signals. However, such a model for GTWCs has not been well studied since the coupling of the encoding processes at the users in GTWCs renders the encoding design non-trivial and challenging. In this paper, we aim to fill this gap in the literature by extending the existing signal models in GOWCs to GTWCs. With our developed signal model for GTWCs, we formulate an optimization problem to jointly design the encoding/decoding schemes for both the users, aiming to minimize the weighted sum of their transmit powers under signal-to-noise ratio constraints. First, we derive an optimal form of the linear decoding schemes under any arbitrary encoding schemes employed at the users. Further, we provide new insights on the encoding design for GTWCs. In particular, we show that it is optimal that one of the users (i) does not transmit the feedback information to the other user at the last channel use, and (ii) transmits its message only over the last channel use. With these solution behaviors, we further simplify the problem and solve it via an iterative two-way optimization scheme. We numerically demonstrate that our proposed scheme for GTWCs achieves a better performance in terms of the transmit power compared to the existing counterparts, such as the non-feedback scheme and one-way optimization scheme.