Abstract:We propose two novel ideas (adoption of deferred rendering and mesh-based representation) to improve the quality of 3D Gaussian splatting (3DGS) based inverse rendering. We first report a problem incurred by hidden Gaussians, where Gaussians beneath the surface adversely affect the pixel color in the volume rendering adopted by the existing methods. In order to resolve the problem, we propose applying deferred rendering and report new problems incurred in a naive application of deferred rendering to the existing 3DGS-based inverse rendering. In an effort to improve the quality of 3DGS-based inverse rendering under deferred rendering, we propose a novel two-step training approach which (1) exploits mesh extraction and utilizes a hybrid mesh-3DGS representation and (2) applies novel regularization methods to better exploit the mesh. Our experiments show that, under relighting, the proposed method offers significantly better rendering quality than the existing 3DGS-based inverse rendering methods. Compared with the SOTA voxel grid-based inverse rendering method, it gives better rendering quality while offering real-time rendering.
Abstract:Relighting, which synthesizes a novel view under a given lighting condition (unseen in training time), is a must feature for immersive photo-realistic experience. However, real-time relighting is challenging due to high computation cost of the rendering equation which requires shape and material decomposition and visibility test to model shadow. Additionally, for indirect illumination, additional computation of rendering equation on each secondary surface point (where reflection occurs) is required rendering real-time relighting challenging. We propose a novel method that executes a CNN renderer to compute primary surface points and rendering parameters, required for direct illumination. We also present a lightweight hash grid-based renderer, for indirect illumination, which is recursively executed to perform the secondary ray tracing process. Both renderers are trained in a distillation from a pre-trained teacher model and provide real-time physically-based rendering under unseen lighting condition at a negligible loss of rendering quality.
Abstract:Speeding up the large-scale distributed training is challenging in that it requires improving various components of training including load balancing, communication, optimizers, etc. We present novel approaches for fast large-scale training of BERT model which individually ameliorates each component thereby leading to a new level of BERT training performance. Load balancing is imperative in distributed BERT training since its training datasets are characterized by samples with various lengths. Communication cost, which is proportional to the scale of distributed training, needs to be hidden by useful computation. In addition, the optimizers, e.g., ADAM, LAMB, etc., need to be carefully re-evaluated in the context of large-scale distributed training. We propose two new ideas, (1) local presorting based on dataset stratification for load balancing and (2) bucket-wise gradient clipping before allreduce which allows us to benefit from the overlap of gradient computation and synchronization as well as the fast training of gradient clipping before allreduce. We also re-evaluate existing optimizers via hyperparameter optimization and utilize ADAM, which also contributes to fast training via larger batches than existing methods. Our proposed methods, all combined, give the fastest MLPerf BERT training of 25.1 (22.3) seconds on 1,024 NVIDIA A100 GPUs, which is 1.33x (1.13x) and 1.57x faster than the other top two (one) submissions to MLPerf v1.1 (v2.0). Our implementation and evaluation results are available at MLPerf v1.1~v2.1.
Abstract:Shape and geometric patterns are essential in defining stylistic identity. However, current 3D style transfer methods predominantly focus on transferring colors and textures, often overlooking geometric aspects. In this paper, we introduce Geometry Transfer, a novel method that leverages geometric deformation for 3D style transfer. This technique employs depth maps to extract a style guide, subsequently applied to stylize the geometry of radiance fields. Moreover, we propose new techniques that utilize geometric cues from the 3D scene, thereby enhancing aesthetic expressiveness and more accurately reflecting intended styles. Our extensive experiments show that Geometry Transfer enables a broader and more expressive range of stylizations, thereby significantly expanding the scope of 3D style transfer.
Abstract:Mixed-precision quantization of efficient networks often suffer from activation instability encountered in the exploration of bit selections. To address this problem, we propose a novel method called MetaMix which consists of bit selection and weight training phases. The bit selection phase iterates two steps, (1) the mixed-precision-aware weight update, and (2) the bit-search training with the fixed mixed-precision-aware weights, both of which combined reduce activation instability in mixed-precision quantization and contribute to fast and high-quality bit selection. The weight training phase exploits the weights and step sizes trained in the bit selection phase and fine-tunes them thereby offering fast training. Our experiments with efficient and hard-to-quantize networks, i.e., MobileNet v2 and v3, and ResNet-18 on ImageNet show that our proposed method pushes the boundary of mixed-precision quantization, in terms of accuracy vs. operations, by outperforming both mixed- and single-precision SOTA methods.
Abstract:Existing learning-based methods for object pose estimation in RGB images are mostly model-specific or category based. They lack the capability to generalize to new object categories at test time, hence severely hindering their practicability and scalability. Notably, recent attempts have been made to solve this issue, but they still require accurate 3D data of the object surface at both train and test time. In this paper, we introduce a novel approach that can estimate in a single forward pass the pose of objects never seen during training, given minimum input. In contrast to existing state-of-the-art approaches, which rely on task-specific modules, our proposed model is entirely based on a transformer architecture, which can benefit from recently proposed 3D-geometry general pretraining. We conduct extensive experiments and report state-of-the-art one-shot performance on the challenging LINEMOD benchmark. Finally, extensive ablations allow us to determine good practices with this relatively new type of architecture in the field.
Abstract:To apply optical flow in practice, it is often necessary to resize the input to smaller dimensions in order to reduce computational costs. However, downsizing inputs makes the estimation more challenging because objects and motion ranges become smaller. Even though recent approaches have demonstrated high-quality flow estimation, they tend to fail to accurately model small objects and precise boundaries when the input resolution is lowered, restricting their applicability to high-resolution inputs. In this paper, we introduce AnyFlow, a robust network that estimates accurate flow from images of various resolutions. By representing optical flow as a continuous coordinate-based representation, AnyFlow generates outputs at arbitrary scales from low-resolution inputs, demonstrating superior performance over prior works in capturing tiny objects with detail preservation on a wide range of scenes. We establish a new state-of-the-art performance of cross-dataset generalization on the KITTI dataset, while achieving comparable accuracy on the online benchmarks to other SOTA methods.
Abstract:Recent studies have shown remarkable progress in GANs based on implicit neural representation (INR) - an MLP that produces an RGB value given its (x, y) coordinate. They represent an image as a continuous version of the underlying 2D signal instead of a 2D array of pixels, which opens new horizons for GAN applications (e.g., zero-shot super-resolution, image outpainting). However, training existing approaches require a heavy computational cost proportional to the image resolution, since they compute an MLP operation for every (x, y) coordinate. To alleviate this issue, we propose a multi-stage patch-based training, a novel and scalable approach that can train INR-based GANs with a flexible computational cost regardless of the image resolution. Specifically, our method allows to generate and discriminate by patch to learn the local details of the image and learn global structural information by a novel reconstruction loss to enable efficient GAN training. We conduct experiments on several benchmark datasets to demonstrate that our approach enhances baseline models in GPU memory while maintaining FIDs at a reasonable level.
Abstract:Personalized news recommendation aims to provide attractive articles for readers by predicting their likelihood of clicking on a certain article. To accurately predict this probability, plenty of studies have been proposed that actively utilize content features of articles, such as words, categories, or entities. However, we observed that the articles' contextual features, such as CTR (click-through-rate), popularity, or freshness, were either neglected or underutilized recently. To prove that this is the case, we conducted an extensive comparison between recent deep-learning models and naive contextual models that we devised and surprisingly discovered that the latter easily outperforms the former. Furthermore, our analysis showed that the recent tendency to apply overly sophisticated deep-learning operations to contextual features was actually hindering the recommendation performance. From this knowledge, we design a purposefully simple contextual module that can boost the previous news recommendation models by a large margin.
Abstract:Self-supervised monocular depth estimation has been widely studied, owing to its practical importance and recent promising improvements. However, most works suffer from limited supervision of photometric consistency, especially in weak texture regions and at object boundaries. To overcome this weakness, we propose novel ideas to improve self-supervised monocular depth estimation by leveraging cross-domain information, especially scene semantics. We focus on incorporating implicit semantic knowledge into geometric representation enhancement and suggest two ideas: a metric learning approach that exploits the semantics-guided local geometry to optimize intermediate depth representations and a novel feature fusion module that judiciously utilizes cross-modality between two heterogeneous feature representations. We comprehensively evaluate our methods on the KITTI dataset and demonstrate that our method outperforms state-of-the-art methods. The source code is available at https://github.com/hyBlue/FSRE-Depth.