Abstract:We present foundation language models developed to power Apple Intelligence features, including a ~3 billion parameter model designed to run efficiently on devices and a large server-based language model designed for Private Cloud Compute. These models are designed to perform a wide range of tasks efficiently, accurately, and responsibly. This report describes the model architecture, the data used to train the model, the training process, how the models are optimized for inference, and the evaluation results. We highlight our focus on Responsible AI and how the principles are applied throughout the model development.
Abstract:Multi-armed bandit methods have been used for dynamic experiments particularly in online services. Among the methods, thompson sampling is widely used because it is simple but shows desirable performance. Many thompson sampling methods for binary rewards use logistic model that is written in a specific parameterization. In this study, we reparameterize logistic model with odds ratio parameters. This shows that thompson sampling can be used with subset of parameters. Based on this finding, we propose a novel method, "Odds-ratio thompson sampling", which is expected to work robust to time-varying effect. Use of the proposed method in continuous experiment is described with discussing a desirable property of the method. In simulation studies, the novel method works robust to temporal background effect, while the loss of performance was only marginal in case with no such effect. Finally, using dataset from real service, we showed that the novel method would gain greater rewards in practical environment.