Abstract:In this paper, we argue that recommendation systems are in a unique position to propagate dangerous and cruel behaviors to people with mental illnesses.
Abstract:"Human-centered machine learning" (HCML) is a term that describes machine learning that applies to human-focused problems. Although this idea is noteworthy and generates scholarly excitement, scholars and practitioners have struggled to clearly define and implement HCML in computer science. This article proposes practices for human-centered machine learning, an area where studying and designing for social, cultural, and ethical implications are just as important as technical advances in ML. These practices bridge between interdisciplinary perspectives of HCI, AI, and sociotechnical fields, as well as ongoing discourse on this new area. The five practices include ensuring HCML is the appropriate solution space for a problem; conceptualizing problem statements as position statements; moving beyond interaction models to define the human; legitimizing domain contributions; and anticipating sociotechnical failure. I conclude by suggesting how these practices might be implemented in research and practice.
Abstract:Distinctive linguistic practices help communities build solidarity and differentiate themselves from outsiders. In an online community, one such practice is variation in orthography, which includes spelling, punctuation, and capitalization. Using a dataset of over two million Instagram posts, we investigate orthographic variation in a community that shares pro-eating disorder (pro-ED) content. We find that not only does orthographic variation grow more frequent over time, it also becomes more profound or deep, with variants becoming increasingly distant from the original: as, for example, #anarexyia is more distant than #anarexia from the original spelling #anorexia. These changes are driven by newcomers, who adopt the most extreme linguistic practices as they enter the community. Moreover, this behavior correlates with engagement: the newcomers who adopt deeper orthographic variants tend to remain active for longer in the community, and the posts that contain deeper variation receive more positive feedback in the form of "likes." Previous work has linked community membership change with language change, and our work casts this connection in a new light, with newcomers driving an evolving practice, rather than adapting to it. We also demonstrate the utility of orthographic variation as a new lens to study sociolinguistic change in online communities, particularly when the change results from an exogenous force such as a content ban.