Abstract:Data scientists often formulate predictive modeling tasks involving fuzzy, hard-to-define concepts, such as the "authenticity" of student writing or the "healthcare need" of a patient. Yet the process by which data scientists translate fuzzy concepts into a concrete, proxy target variable remains poorly understood. We interview fifteen data scientists in education (N=8) and healthcare (N=7) to understand how they construct target variables for predictive modeling tasks. Our findings suggest that data scientists construct target variables through a bricolage process, involving iterative negotiation between high-level measurement objectives and low-level practical constraints. Data scientists attempt to satisfy five major criteria for a target variable through bricolage: validity, simplicity, predictability, portability, and resource requirements. To achieve this, data scientists adaptively use problem (re)formulation strategies, such as swapping out one candidate target variable for another when the first fails to meet certain criteria (e.g., predictability), or composing multiple outcomes into a single target variable to capture a more holistic set of modeling objectives. Based on our findings, we present opportunities for future HCI, CSCW, and ML research to better support the art and science of target variable construction.
Abstract:As AI technologies become more human-facing, there have been numerous calls to adapt participatory approaches to AI development -- spurring the idea of participatory AI. However, these calls often focus only on primary stakeholders, such as end-users, and not secondary stakeholders. This paper seeks to translate the ideals of participatory AI to a broader population of secondary AI stakeholders through semi-structured interviews. We theorize that meaningful participation involves three participatory ideals: (1) informedness, (2) consent, and (3) agency. We also explore how secondary stakeholders realize these ideals by traversing a complicated problem space. Like walking up the rungs of a ladder, these ideals build on one another. We introduce three stakeholder archetypes: the reluctant data contributor, the unsupported activist, and the well-intentioned practitioner, who must navigate systemic barriers to achieving agentic AI relationships. We envision an AI future where secondary stakeholders are able to meaningfully participate with the AI systems they influence and are influenced by.
Abstract:Should a large language model (LLM) be used as a therapist? In this paper, we investigate the use of LLMs to *replace* mental health providers, a use case promoted in the tech startup and research space. We conduct a mapping review of therapy guides used by major medical institutions to identify crucial aspects of therapeutic relationships, such as the importance of a therapeutic alliance between therapist and client. We then assess the ability of LLMs to reproduce and adhere to these aspects of therapeutic relationships by conducting several experiments investigating the responses of current LLMs, such as `gpt-4o`. Contrary to best practices in the medical community, LLMs 1) express stigma toward those with mental health conditions and 2) respond inappropriately to certain common (and critical) conditions in naturalistic therapy settings -- e.g., LLMs encourage clients' delusional thinking, likely due to their sycophancy. This occurs even with larger and newer LLMs, indicating that current safety practices may not address these gaps. Furthermore, we note foundational and practical barriers to the adoption of LLMs as therapists, such as that a therapeutic alliance requires human characteristics (e.g., identity and stakes). For these reasons, we conclude that LLMs should not replace therapists, and we discuss alternative roles for LLMs in clinical therapy.
Abstract:In this paper, we argue that recommendation systems are in a unique position to propagate dangerous and cruel behaviors to people with mental illnesses.
Abstract:"Human-centered machine learning" (HCML) is a term that describes machine learning that applies to human-focused problems. Although this idea is noteworthy and generates scholarly excitement, scholars and practitioners have struggled to clearly define and implement HCML in computer science. This article proposes practices for human-centered machine learning, an area where studying and designing for social, cultural, and ethical implications are just as important as technical advances in ML. These practices bridge between interdisciplinary perspectives of HCI, AI, and sociotechnical fields, as well as ongoing discourse on this new area. The five practices include ensuring HCML is the appropriate solution space for a problem; conceptualizing problem statements as position statements; moving beyond interaction models to define the human; legitimizing domain contributions; and anticipating sociotechnical failure. I conclude by suggesting how these practices might be implemented in research and practice.
Abstract:Distinctive linguistic practices help communities build solidarity and differentiate themselves from outsiders. In an online community, one such practice is variation in orthography, which includes spelling, punctuation, and capitalization. Using a dataset of over two million Instagram posts, we investigate orthographic variation in a community that shares pro-eating disorder (pro-ED) content. We find that not only does orthographic variation grow more frequent over time, it also becomes more profound or deep, with variants becoming increasingly distant from the original: as, for example, #anarexyia is more distant than #anarexia from the original spelling #anorexia. These changes are driven by newcomers, who adopt the most extreme linguistic practices as they enter the community. Moreover, this behavior correlates with engagement: the newcomers who adopt deeper orthographic variants tend to remain active for longer in the community, and the posts that contain deeper variation receive more positive feedback in the form of "likes." Previous work has linked community membership change with language change, and our work casts this connection in a new light, with newcomers driving an evolving practice, rather than adapting to it. We also demonstrate the utility of orthographic variation as a new lens to study sociolinguistic change in online communities, particularly when the change results from an exogenous force such as a content ban.