Abstract:Training certifiably robust neural networks is an important but challenging task. While many algorithms for (deterministic) certified training have been proposed, they are often evaluated on different training schedules, certification methods, and systematically under-tuned hyperparameters, making it difficult to compare their performance. To address this challenge, we introduce CTBENCH, a unified library and a high-quality benchmark for certified training that evaluates all algorithms under fair settings and systematically tuned hyperparameters. We show that (1) almost all algorithms in CTBENCH surpass the corresponding reported performance in literature in the magnitude of algorithmic improvements, thus establishing new state-of-the-art, and (2) the claimed advantage of recent algorithms drops significantly when we enhance the outdated baselines with a fair training schedule, a fair certification method and well-tuned hyperparameters. Based on CTBENCH, we provide new insights into the current state of certified training and suggest future research directions. We are confident that CTBENCH will serve as a benchmark and testbed for future research in certified training.
Abstract:Training neural networks with high certified accuracy against adversarial examples remains an open problem despite significant efforts. While certification methods can effectively leverage tight convex relaxations for bound computation, in training, these methods perform worse than looser relaxations. Prior work hypothesized that this is caused by the discontinuity and perturbation sensitivity of the loss surface induced by these tighter relaxations. In this work, we show theoretically that Gaussian Loss Smoothing can alleviate both of these issues. We confirm this empirically by proposing a certified training method combining PGPE, an algorithm computing gradients of a smoothed loss, with different convex relaxations. When using this training method, we observe that tighter bounds indeed lead to strictly better networks that can outperform state-of-the-art methods on the same network. While scaling PGPE-based training remains challenging due to high computational cost, our results clearly demonstrate the promise of Gaussian Loss Smoothing for training certifiably robust neural networks.