Abstract:Few-shot semantic segmentation (FSS) endeavors to segment unseen classes with only a few labeled samples. Current FSS methods are commonly built on the assumption that their training and application scenarios share similar domains, and their performances degrade significantly while applied to a distinct domain. To this end, we propose to leverage the cutting-edge foundation model, the Segment Anything Model (SAM), for generalization enhancement. The SAM however performs unsatisfactorily on domains that are distinct from its training data, which primarily comprise natural scene images, and it does not support automatic segmentation of specific semantics due to its interactive prompting mechanism. In our work, we introduce APSeg, a novel auto-prompt network for cross-domain few-shot semantic segmentation (CD-FSS), which is designed to be auto-prompted for guiding cross-domain segmentation. Specifically, we propose a Dual Prototype Anchor Transformation (DPAT) module that fuses pseudo query prototypes extracted based on cycle-consistency with support prototypes, allowing features to be transformed into a more stable domain-agnostic space. Additionally, a Meta Prompt Generator (MPG) module is introduced to automatically generate prompt embeddings, eliminating the need for manual visual prompts. We build an efficient model which can be applied directly to target domains without fine-tuning. Extensive experiments on four cross-domain datasets show that our model outperforms the state-of-the-art CD-FSS method by 5.24% and 3.10% in average accuracy on 1-shot and 5-shot settings, respectively.
Abstract:Human facial action units (AUs) are mutually related in a hierarchical manner, as not only they are associated with each other in both spatial and temporal domains but also AUs located in the same/close facial regions show stronger relationships than those of different facial regions. While none of existing approach thoroughly model such hierarchical inter-dependencies among AUs, this paper proposes to comprehensively model multi-scale AU-related dynamic and hierarchical spatio-temporal relationship among AUs for their occurrences recognition. Specifically, we first propose a novel multi-scale temporal differencing network with an adaptive weighting block to explicitly capture facial dynamics across frames at different spatial scales, which specifically considers the heterogeneity of range and magnitude in different AUs' activation. Then, a two-stage strategy is introduced to hierarchically model the relationship among AUs based on their spatial distribution (i.e., local and cross-region AU relationship modelling). Experimental results achieved on BP4D and DISFA show that our approach is the new state-of-the-art in the field of AU occurrence recognition. Our code is publicly available at https://github.com/CVI-SZU/MDHR.
Abstract:Class Activation Map (CAM) has emerged as a popular tool for weakly supervised semantic segmentation (WSSS), allowing the localization of object regions in an image using only image-level labels. However, existing CAM methods suffer from under-activation of target object regions and false-activation of background regions due to the fact that a lack of detailed supervision can hinder the model's ability to understand the image as a whole. In this paper, we propose a novel Question-Answer Cross-Language-Image Matching framework for WSSS (QA-CLIMS), leveraging the vision-language foundation model to maximize the text-based understanding of images and guide the generation of activation maps. First, a series of carefully designed questions are posed to the VQA (Visual Question Answering) model with Question-Answer Prompt Engineering (QAPE) to generate a corpus of both foreground target objects and backgrounds that are adaptive to query images. We then employ contrastive learning in a Region Image Text Contrastive (RITC) network to compare the obtained foreground and background regions with the generated corpus. Our approach exploits the rich textual information from the open vocabulary as additional supervision, enabling the model to generate high-quality CAMs with a more complete object region and reduce false-activation of background regions. We conduct extensive analysis to validate the proposed method and show that our approach performs state-of-the-art on both PASCAL VOC 2012 and MS COCO datasets. Code is available at: https://github.com/CVI-SZU/QA-CLIMS