Abstract:One of the key features of sixth generation (6G) mobile communications will be integrated sensing and communication (ISAC). While the main goal of ISAC in standardization efforts is to detect objects, the byproducts of radar operations can be used to enable new services in 6G, such as weather sensing. Even though weather radars are the most prominent technology for weather detection and monitoring, they are expensive and usually neglect areas in close vicinity. To this end, we propose reusing the dense deployment of 6G base stations for weather sensing purposes by detecting and estimating weather conditions. We implement both a classifier and a regressor as a convolutional neural network trained across measurements with varying precipitation rates and wind speeds. We implement our approach in an ISAC proof-of-concept, and conduct a multi-week experiment campaign. Experimental results show that we are able to jointly and accurately classify weather conditions with accuracies of 99.38% and 98.99% for precipitation rate and wind speed, respectively. For estimation, we obtain errors of 1.2 mm/h and 1.5 km/h, for precipitation rate and wind speed, respectively. These findings indicate that weather sensing services can be reliably deployed in 6G ISAC networks, broadening their service portfolio and boosting their market value.
Abstract:Bistatic integrated sensing and communication (ISAC) enables efficient reuse of the existing cellular infrastructure and is likely to play an important role in future sensing networks. In this context, ISAC using the data channel is a promising approach to improve the bistatic sensing performance compared to relying solely on pilots. One of the challenges associated with this approach is resource allocation: the communication link aims to transmit higher modulation order (MO) symbols to maximize the throughput, whereas a lower MO is preferable for sensing to achieve a higher signal-to-noise ratio in the radar image. To address this conflict, this paper introduces a hybrid resource allocation scheme. By placing lower MO symbols as pseudo-pilots on a suitable sensing grid, we enhance the bistatic sensing performance while only slightly reducing the spectral efficiency of the communication link. Simulation results validate our approach against different baselines and provide practical insights into how decoding errors affect the sensing performance.




Abstract:Integrated Sensing and Communication (ISAC) systems enable cellular networks to jointly operate as communication technology and sense the environment. While opportunities and potential performance have been largely investigated in simulations, few experimental works have showcased Automatic Target Recognition (ATR) effectiveness in a real-world deployment based on cellular radio units. To bridge this gap, this paper presents an initial study investigating the feasibility of ATR for ISAC. Our ATR solution uses a Deep Learning (DL)-based detector to infer the target class directly from the radar images generated by the ISAC system. The DL detector is evaluated with experimental data from a ISAC testbed based on commercially available mmWave radio units in the ARENA 2036 industrial research campus located in Stuttgart, Germany. Experimental results demonstrate accurate classification performance, demonstrating the feasibility of ATR ISAC with cellular hardware in our setup. We finally provide insights about the open generalization challenges, that will fuel future work on the topic.
Abstract:The introduction of Integrated Sensing and Communications (ISAC) in cellular systems is not expected to result in a shift away from the popular choice of cost- and energy-efficient analog or hybrid beamforming structures. However, this comes at the cost of limiting the angular capabilities to a confined space per acquisitions. Thus, as a prerequisite for the successful implementation of numerous ISAC use cases, the need for an optimal angular estimation of targets and their separation based on the minimal number of angular samples arises. In this work, different approaches for angular estimation based on a minimal, DFT-based set of angular samples are evaluated. The samples are acquired through sweeping multiple beams of an ISAC proof of concept (PoC) in the industrial scenario of the ARENA2036. The study's findings indicate that interpolation approaches are more effective for generalizing across different types of angular scenarios. While the orthogonal matching pursuit (OMP) approach exhibits the most accurate estimation for a single, strong and clearly discriminable target, the DFT-based interpolation approach demonstrates the best overall estimation performance.




Abstract:Peak detection is a fundamental task in radar and has therefore been studied extensively in radar literature. However, Integrated Sensing and Communication (ISAC) systems for sixth generation (6G) cellular networks need to perform peak detection under hardware impairments and constraints imposed by the underlying system designed for communications. This paper presents a comparative study of classical Constant False Alarm Rate (CFAR)-based algorithms and a recently proposed Convolutional Neural Network (CNN)-based method for peak detection in ISAC radar images. To impose practical constraints of ISAC systems, we model the impact of hardware impairments, such as power amplifier nonlinearities and quantization noise. We perform extensive simulation campaigns focusing on multi-target detection under varying noise as well as on target separation in resolution-limited scenarios. The results show that CFAR detectors require approximate knowledge of the operating scenario and the use of window functions for reliable performance. The CNN, on the other hand, achieves high performance in all scenarios, but requires a preprocessing step for the input data.




Abstract:A key challenge in future 6G Integrated Sensing and Communications (ISAC) networks is to define the angular operations of transmitter and receiver, i.e., the sampling task of the angular domains, to acquire information about the environment. In this work we extend previous analysis for optimal angular sampling of monostatic setups to two-dimensional bistatic deployments, that are as important as the former in future ISAC cellular scenarios. Our approach overcomes the limitations of suboptimal prior art sampling and interpolation techniques, such as spline interpolation. We demonstrate that separating azimuth operations of the two transmit and receive arrays is optimal to sample the angular domain in an array-specific normalized angular frequency (NAF). This allows us to derive a loss-less reconstruction of the angular domain, enabling a more efficient and accurate sampling strategy for bistatic sensing applications compared to legacy approaches. As demonstrated by different Monte Carlo experiments, our approach enables future bistatic ISAC deployments with better performance compared to the other suboptimal solutions.
Abstract:Integrated sensing and communication (ISAC) poses various challenges that arise from the communication-centric design of cellular networks. One of them is target detection with time division duplex (TDD) transmission used in current 5G and future 6G deployments, where the periodic on-off behavior of the transmitter creates impulsive sidelobes in the radar point spread function (PSF). These can be mistaken for actual targets by conventional peak detection techniques, leading to false alarms. In this work, we first analytically describe the range-Doppler PSF due to TDD windowing. We then propose a computationally efficient method that leverages the PSF to distinguish impulsive sidelobes from valid target peaks. Simulation results and outdoor drone measurements with an ISAC proof of concept demonstrate the capability of our algorithm, showing that it can achieve reliable target detection while limiting false alarms.
Abstract:6G communication systems promise to deliver sensing capabilities by utilizing the orthogonal frequency division multiplexing (OFDM) communication signal for sensing. However, the cyclic prefix inherent in OFDM systems limits the sensing range, necessitating compensation techniques to detect small, distant targets like drones. In this paper, we show that state-of-the-art coherent compensation methods fail in scenarios involving multiple targets, resulting in an increased noise floor in the radar image. Our contributions include a novel multi target coherent compensation algorithm and a generalized signal-to-interference-and-noise ratio for multiple targets to evaluate the performance. Our algorithm achieves the same detection performance at long distances requiring only 3.6% of the radio resources compared to classical OFDM radar processing. This enables resource efficient sensing at long distances in multi target scenarios with legacy communications-only networks.




Abstract:The distributed nature of cellular networks is one of the main enablers for integrated sensing and communication (ISAC). For target positioning and tracking, making use of bistatic measurements is non-trivial due to their non-linear relationship with Cartesian coordinates. Most of the literature proposes geometric-based methods to determine the target's location by solving a well-defined set of equations stemming from the available measurements. The error covariance to be used for Bayesian tracking is then derived from local Taylor expansions. In our work we adaptively fuse any subset of bistatic measurements using a maximum likelihood (ML) framework, allowing to incorporate every possible combination of available measurements, i.e., transmitter angle, receiver angle and bistatic range. Moreover, our ML approach is intrinsically flexible, as it can be extended to fuse an arbitrary number of measurements by multistatic setups. Finally, we propose both a fixed and dynamic way to compute the covariance matrix for the position error to be fed to Bayesian tracking techniques, like a Kalman filter. Numerical evaluations with realistic cellular communications parameters at mmWave frequencies show that our proposal outperforms the considered baselines, achieving a location and velocity root mean square error of 0.25 m and 0.83 m/s, respectively.
Abstract:Enabling bistatic radar sensing within the context of integrated sensing and communication (ISAC) for future sixth generation mobile networks demands strict synchronization accuracy, which is particularly challenging to be achieved with over-the-air synchronization. Existing algorithms handle time and frequency offsets adequately, but provide insufficiently accurate sampling frequency offset (SFO) estimates that result in degradation of obtained radar images in the form of signal-to-noise ratio loss and migration of range and Doppler shift. This article introduces an SFO estimation algorithm named tilt inference of time offset (TITO) for orthogonal frequency-division multiplexing (OFDM)-based ISAC. Using available pilot subcarriers, TITO obtains channel impulse response estimates and extracts information on the SFO-induced delay migration to a dominant reference path with constant range, Doppler shift, and angle between transmit and receive ISAC nodes. TITO then adaptively selects the delay estimates that are only negligibly impaired by SFO-induced intersymbol interference, ultimately employing them to estimate the SFO. Assuming a scenario without a direct line-of-sight (LoS) between the aforementioned transmitting and receiving ISAC nodes, a system concept with a relay reflective intelligent surface (RIS) is used to create the aforementioned reference path is proposed. Besides a mathematical derivation of accuracy bounds, simulation and measurements at 26.2 GHz are presented to demonstrate TITO's superiority over existing methods in terms of SFO estimation accuracy and robustness.