Abstract:Integrated sensing and communication (ISAC) is a novel capability expected for sixth generation (6G) cellular networks. To that end, several challenges must be addressed to enable both mono- and bistatic sensing in existing deployments. A common impairment in both architectures is oscillator phase noise (PN), which not only degrades communication performance, but also severely impairs radar sensing. To enable a broader understanding of orthogonal-frequency division multiplexing (OFDM)-based sensing impaired by PN, this article presents an analysis of sensing peformance in OFDM-based ISAC for different waveform parameter choices and settings in both mono- and bistatic architectures. In this context, the distortion of the adopted digital constellation modulation is analyzed and the resulting PN-induced effects in range-Doppler radar images are investigated both without and with PN compensation. These effects include peak power loss of target reflections and higher sidelobe levels, especially in the Doppler shift direction. In the conducted analysis, these effects are measured by the peak power loss ratio, peak-to-sidelobe level ratio, and integrated sidelobe level ratio parameters, the two latter being evaluated in both range and Doppler shift directions. In addition, the signal-to-interference ratio is analyzed to allow not only quantifying the distortion of a target reflection, but also measuring the interference floor level in a radar image. The achieved results allow to quantify not only the PN-induced impairments to a single target, but also how the induced degradation may impair the sensing performance of OFDM-based ISAC systems in multi-target scenarios.
Abstract:Non-negative matrix factorization with the generalized Kullback-Leibler divergence (NMF) and latent Dirichlet allocation (LDA) are two popular approaches for dimensionality reduction of non-negative data. Here, we show that NMF with $\ell_1$ normalization constraints on the columns of both matrices of the decomposition and a Dirichlet prior on the columns of one matrix is equivalent to LDA. To show this, we demonstrate that explicitly accounting for the scaling ambiguity of NMF by adding $\ell_1$ normalization constraints to the optimization problem allows a joint update of both matrices in the widely used multiplicative updates (MU) algorithm. When both of the matrices are normalized, the joint MU algorithm leads to probabilistic latent semantic analysis (PLSA), which is LDA without a Dirichlet prior. Our approach of deriving joint updates for NMF also reveals that a Lasso penalty on one matrix together with an $\ell_1$ normalization constraint on the other matrix is insufficient to induce any sparsity.
Abstract:We evaluate the influence of multi-snapshot sensing and varying signal-to-noise ratio (SNR) on the overall performance of neural network (NN)-based joint communication and sensing (JCAS) systems. To enhance the training behavior, we decouple the loss functions from the respective SNR values and the number of sensing snapshots, using bounds of the sensing performance. Pre-processing is done through conventional sensing signal processing steps on the inputs to the sensing NN. The proposed method outperforms classical algorithms, such as a Neyman-Pearson-based power detector for object detection and ESPRIT for angle of arrival (AoA) estimation for quadrature amplitude modulation (QAM) at low SNRs.
Abstract:As the demand for higher data throughput in coherent optical communication systems increases, we need to find ways to increase capacity in existing and future optical communication links. To address the demand for higher spectral efficiencies, we apply end-to-end optimization for joint geometric and probabilistic constellation shaping in the presence of Wiener phase noise and carrier phase estimation. Our approach follows state-of-the-art bitwise auto-encoders, which require a differentiable implementation of all operations between transmitter and receiver, including the DSP algorithms. In this work, we show how to modify the ubiquitous blind phase search (BPS) algorithm, a popular carrier phase estimation algorithm, to make it differentiable and include it in the end-to-end constellation shaping. By leveraging joint geometric and probabilistic constellation shaping, we are able to obtain a robust and pilot-free modulation scheme improving the performance of 64-ary communication systems by at least 0.1bit/symbol compared to square QAM constellations with neural demappers and by 0.05 bit/symbol compared to previously presented approaches applying only geometric constellation shaping.
Abstract:We perform geometric constellation shaping with optimized bit labeling using a binary autoencoder including a differential blind phase search (BPS). Our approach enables full end-to-end training of optical coherent transceivers taking into account the digital signal processing.