Abstract:The latest reasoning-enhanced large language models (reasoning LLMs), such as DeepSeek-R1 and OpenAI-o3, have demonstrated remarkable success. However, the application of such reasoning enhancements to the highly professional medical domain has not been clearly evaluated, particularly regarding with not only assessing the final generation but also examining the quality of their reasoning processes. In this study, we present MedR-Bench, a reasoning-focused medical evaluation benchmark comprising 1,453 structured patient cases with reasoning references mined from case reports. Our benchmark spans 13 body systems and 10 specialty disorders, encompassing both common and rare diseases. In our evaluation, we introduce a versatile framework consisting of three critical clinical stages: assessment recommendation, diagnostic decision-making, and treatment planning, comprehensively capturing the LLMs' performance across the entire patient journey in healthcare. For metrics, we propose a novel agentic system, Reasoning Evaluator, designed to automate and objectively quantify free-text reasoning responses in a scalable manner from the perspectives of efficiency, factuality, and completeness by dynamically searching and performing cross-referencing checks. As a result, we assess five state-of-the-art reasoning LLMs, including DeepSeek-R1, OpenAI-o3-mini, and others. Our results reveal that current LLMs can handle relatively simple diagnostic tasks with sufficient critical assessment results, achieving accuracy generally over 85%. However, they still struggle with more complex tasks, such as assessment recommendation and treatment planning. In reasoning, their reasoning processes are generally reliable, with factuality scores exceeding 90%, though they often omit critical reasoning steps. Our study clearly reveals further development directions for current clinical LLMs.
Abstract:The emergence of Large Language Models (LLMs) in the medical domain has stressed a compelling need for standard datasets to evaluate their question-answering (QA) performance. Although there have been several benchmark datasets for medical QA, they either cover common knowledge across different departments or are specific to another department rather than pediatrics. Moreover, some of them are limited to objective questions and do not measure the generation capacity of LLMs. Therefore, they cannot comprehensively assess the QA ability of LLMs in pediatrics. To fill this gap, we construct PediaBench, the first Chinese pediatric dataset for LLM evaluation. Specifically, it contains 4,565 objective questions and 1,632 subjective questions spanning 12 pediatric disease groups. It adopts an integrated scoring criterion based on different difficulty levels to thoroughly assess the proficiency of an LLM in instruction following, knowledge understanding, clinical case analysis, etc. Finally, we validate the effectiveness of PediaBench with extensive experiments on 20 open-source and commercial LLMs. Through an in-depth analysis of experimental results, we offer insights into the ability of LLMs to answer pediatric questions in the Chinese context, highlighting their limitations for further improvements. Our code and data are published at https://github.com/ACMISLab/PediaBench.