Preferred Elements, Inc.
Abstract:We introduce PLaMo-100B, a large-scale language model designed for Japanese proficiency. The model was trained from scratch using 2 trillion tokens, with architecture such as QK Normalization and Z-Loss to ensure training stability during the training process. Post-training techniques, including Supervised Fine-Tuning and Direct Preference Optimization, were applied to refine the model's performance. Benchmark evaluations suggest that PLaMo-100B performs well, particularly in Japanese-specific tasks, achieving results that are competitive with frontier models like GPT-4.
Abstract:We present the instance segmentation and the object detection method used by team PFDet for Open Images Challenge 2019. We tackle a massive dataset size, huge class imbalance and federated annotations. Using this method, the team PFDet achieved 3rd and 4th place in the instance segmentation and the object detection track, respectively.
Abstract:The purpose of this study is to introduce new design-criteria for next-generation hyperparameter optimization software. The criteria we propose include (1) define-by-run API that allows users to construct the parameter search space dynamically, (2) efficient implementation of both searching and pruning strategies, and (3) easy-to-setup, versatile architecture that can be deployed for various purposes, ranging from scalable distributed computing to light-weight experiment conducted via interactive interface. In order to prove our point, we will introduce Optuna, an optimization software which is a culmination of our effort in the development of a next generation optimization software. As an optimization software designed with define-by-run principle, Optuna is particularly the first of its kind. We will present the design-techniques that became necessary in the development of the software that meets the above criteria, and demonstrate the power of our new design through experimental results and real world applications. Our software is available under the MIT license (https://github.com/pfnet/optuna/).
Abstract:Efficient and reliable methods for training of object detectors are in higher demand than ever, and more and more data relevant to the field is becoming available. However, large datasets like Open Images Dataset v4 (OID) are sparsely annotated, and some measure must be taken in order to ensure the training of a reliable detector. In order to take the incompleteness of these datasets into account, one possibility is to use pretrained models to detect the presence of the unverified objects. However, the performance of such a strategy depends largely on the power of the pretrained model. In this study, we propose part-aware sampling, a method that uses human intuition for the hierarchical relation between objects. In terse terms, our method works by making assumptions like "a bounding box for a car should contain a bounding box for a tire". We demonstrate the power of our method on OID and compare the performance against a method based on a pretrained model. Our method also won the first and second place on the public and private test sets of the Google AI Open Images Competition 2018.
Abstract:We present a large-scale object detection system by team PFDet. Our system enables training with huge datasets using 512 GPUs, handles sparsely verified classes, and massive class imbalance. Using our method, we achieved 2nd place in the Google AI Open Images Object Detection Track 2018 on Kaggle.