Abstract:Cross-platform recommendation aims to improve recommendation accuracy by gathering heterogeneous features from different platforms. However, such cross-silo collaborations between platforms are restricted by increasingly stringent privacy protection regulations, thus data cannot be aggregated for training. Federated learning (FL) is a practical solution to deal with the data silo problem in recommendation scenarios. Existing cross-silo FL methods transmit model information to collaboratively build a global model by leveraging the data of overlapped users. However, in reality, the number of overlapped users is often very small, thus largely limiting the performance of such approaches. Moreover, transmitting model information during training requires high communication costs and may cause serious privacy leakage. In this paper, we propose a novel privacy-preserving double distillation framework named FedPDD for cross-silo federated recommendation, which efficiently transfers knowledge when overlapped users are limited. Specifically, our double distillation strategy enables local models to learn not only explicit knowledge from the other party but also implicit knowledge from its past predictions. Moreover, to ensure privacy and high efficiency, we employ an offline training scheme to reduce communication needs and privacy leakage risk. In addition, we adopt differential privacy to further protect the transmitted information. The experiments on two real-world recommendation datasets, HetRec-MovieLens and Criteo, demonstrate the effectiveness of FedPDD compared to the state-of-the-art approaches.
Abstract:Recently, Graph Convolutional Network (GCN) has been widely used in Hyperspectral Image (HSI) classification due to its satisfactory performance. However, the number of labeled pixels is very limited in HSI, and thus the available supervision information is usually insufficient, which will inevitably degrade the representation ability of most existing GCN-based methods. To enhance the feature representation ability, in this paper, a GCN model with contrastive learning is proposed to explore the supervision signals contained in both spectral information and spatial relations, which is termed Contrastive Graph Convolutional Network (ConGCN), for HSI classification. First, in order to mine sufficient supervision signals from spectral information, a semi-supervised contrastive loss function is utilized to maximize the agreement between different views of the same node or the nodes from the same land cover category. Second, to extract the precious yet implicit spatial relations in HSI, a graph generative loss function is leveraged to explore supplementary supervision signals contained in the graph topology. In addition, an adaptive graph augmentation technique is designed to flexibly incorporate the spectral-spatial priors of HSI, which helps facilitate the subsequent contrastive representation learning. The extensive experimental results on four typical benchmark datasets firmly demonstrate the effectiveness of the proposed ConGCN in both qualitative and quantitative aspects.
Abstract:Nowadays, deep learning methods, especially the Graph Convolutional Network (GCN), have shown impressive performance in hyperspectral image (HSI) classification. However, the current GCN-based methods treat graph construction and image classification as two separate tasks, which often results in suboptimal performance. Another defect of these methods is that they mainly focus on modeling the local pairwise importance between graph nodes while lack the capability to capture the global contextual information of HSI. In this paper, we propose a Multi-level GCN with Automatic Graph Learning method (MGCN-AGL) for HSI classification, which can automatically learn the graph information at both local and global levels. By employing attention mechanism to characterize the importance among spatially neighboring regions, the most relevant information can be adaptively incorporated to make decisions, which helps encode the spatial context to form the graph information at local level. Moreover, we utilize multiple pathways for local-level graph convolution, in order to leverage the merits from the diverse spatial context of HSI and to enhance the expressive power of the generated representations. To reconstruct the global contextual relations, our MGCN-AGL encodes the long range dependencies among image regions based on the expressive representations that have been produced at local level. Then inference can be performed along the reconstructed graph edges connecting faraway regions. Finally, the multi-level information is adaptively fused to generate the network output. In this means, the graph learning and image classification can be integrated into a unified framework and benefit each other. Extensive experiments have been conducted on three real-world hyperspectral datasets, which are shown to outperform the state-of-the-art methods.
Abstract:Graph-based Semi-Supervised Learning (SSL) aims to transfer the labels of a handful of labeled data to the remaining massive unlabeled data via a graph. As one of the most popular graph-based SSL approaches, the recently proposed Graph Convolutional Networks (GCNs) have gained remarkable progress by combining the sound expressiveness of neural networks with graph structure. Nevertheless, the existing graph-based methods do not directly address the core problem of SSL, i.e., the shortage of supervision, and thus their performances are still very limited. To accommodate this issue, a novel GCN-based SSL algorithm is presented in this paper to enrich the supervision signals by utilizing both data similarities and graph structure. Firstly, by designing a semi-supervised contrastive loss, improved node representations can be generated via maximizing the agreement between different views of the same data or the data from the same class. Therefore, the rich unlabeled data and the scarce yet valuable labeled data can jointly provide abundant supervision information for learning discriminative node representations, which helps improve the subsequent classification result. Secondly, the underlying determinative relationship between the data features and input graph topology is extracted as supplementary supervision signals for SSL via using a graph generative loss related to the input features. Intensive experimental results on a variety of real-world datasets firmly verify the effectiveness of our algorithm compared with other state-of-the-art methods.
Abstract:In hyperspectral image (HSI) classification, spatial context has demonstrated its significance in achieving promising performance. However, conventional spatial context-based methods simply assume that spatially neighboring pixels should correspond to the same land-cover class, so they often fail to correctly discover the contextual relations among pixels in complex situations, and thus leading to imperfect classification results on some irregular or inhomogeneous regions such as class boundaries. To address this deficiency, we develop a new HSI classification method based on the recently proposed Graph Convolutional Network (GCN), as it can flexibly encode the relations among arbitrarily structured non-Euclidean data. Different from traditional GCN, there are two novel strategies adopted by our method to further exploit the contextual relations for accurate HSI classification. First, since the receptive field of traditional GCN is often limited to fairly small neighborhood, we proposed to capture long range contextual relations in HSI by performing successive graph convolutions on a learned region-induced graph which is transformed from the original 2D image grids. Second, we refine the graph edge weight and the connective relationships among image regions by learning the improved adjacency matrix and the 'edge filter', so that the graph can be gradually refined to adapt to the representations generated by each graph convolutional layer. Such updated graph will in turn result in accurate region representations, and vice versa. The experiments carried out on three real-world benchmark datasets demonstrate that the proposed method yields significant improvement in the classification performance when compared with some state-of-the-art approaches.
Abstract:Convolutional Neural Network (CNN) has demonstrated impressive ability to represent hyperspectral images and to achieve promising results in hyperspectral image classification. However, traditional CNN models can only operate convolution on regular square image regions with fixed size and weights, so they cannot universally adapt to the distinct local regions with various object distributions and geometric appearances. Therefore, their classification performances are still to be improved, especially in class boundaries. To alleviate this shortcoming, we consider employing the recently proposed Graph Convolutional Network (GCN) for hyperspectral image classification, as it can conduct the convolution on arbitrarily structured non-Euclidean data and is applicable to the irregular image regions represented by graph topological information. Different from the commonly used GCN models which work on a fixed graph, we enable the graph to be dynamically updated along with the graph convolution process, so that these two steps can be benefited from each other to gradually produce the discriminative embedded features as well as a refined graph. Moreover, to comprehensively deploy the multi-scale information inherited by hyperspectral images, we establish multiple input graphs with different neighborhood scales to extensively exploit the diversified spectral-spatial correlations at multiple scales. Therefore, our method is termed 'Multi-scale Dynamic Graph Convolutional Network' (MDGCN). The experimental results on three typical benchmark datasets firmly demonstrate the superiority of the proposed MDGCN to other state-of-the-art methods in both qualitative and quantitative aspects.