Abstract:Large Language Models (LLMs) have recently demonstrated significant potential in the field of time series forecasting, offering impressive capabilities in handling complex temporal data. However, their robustness and reliability in real-world applications remain under-explored, particularly concerning their susceptibility to adversarial attacks. In this paper, we introduce a targeted adversarial attack framework for LLM-based time series forecasting. By employing both gradient-free and black-box optimization methods, we generate minimal yet highly effective perturbations that significantly degrade the forecasting accuracy across multiple datasets and LLM architectures. Our experiments, which include models like TimeGPT and LLM-Time with GPT-3.5, GPT-4, LLaMa, and Mistral, show that adversarial attacks lead to much more severe performance degradation than random noise, and demonstrate the broad effectiveness of our attacks across different LLMs. The results underscore the critical vulnerabilities of LLMs in time series forecasting, highlighting the need for robust defense mechanisms to ensure their reliable deployment in practical applications.
Abstract:Deep Generative Models (DGMs) have rapidly advanced in recent years, becoming essential tools in various fields due to their ability to learn complex data distributions and generate synthetic data. Their importance in transportation research is increasingly recognized, particularly for applications like traffic data generation, prediction, and feature extraction. This paper offers a comprehensive introduction and tutorial on DGMs, with a focus on their applications in transportation. It begins with an overview of generative models, followed by detailed explanations of fundamental models, a systematic review of the literature, and practical tutorial code to aid implementation. The paper also discusses current challenges and opportunities, highlighting how these models can be effectively utilized and further developed in transportation research. This paper serves as a valuable reference, guiding researchers and practitioners from foundational knowledge to advanced applications of DGMs in transportation research.
Abstract:Cooperative Adaptive Cruise Control (CACC) plays a pivotal role in enhancing traffic efficiency and safety in Connected and Autonomous Vehicles (CAVs). Reinforcement Learning (RL) has proven effective in optimizing complex decision-making processes in CACC, leading to improved system performance and adaptability. Among RL approaches, Multi-Agent Reinforcement Learning (MARL) has shown remarkable potential by enabling coordinated actions among multiple CAVs through Centralized Training with Decentralized Execution (CTDE). However, MARL often faces scalability issues, particularly when CACC vehicles suddenly join or leave the platoon, resulting in performance degradation. To address these challenges, we propose Communication-Aware Reinforcement Learning (CA-RL). CA-RL includes a communication-aware module that extracts and compresses vehicle communication information through forward and backward information transmission modules. This enables efficient cyclic information propagation within the CACC traffic flow, ensuring policy consistency and mitigating the scalability problems of MARL in CACC. Experimental results demonstrate that CA-RL significantly outperforms baseline methods in various traffic scenarios, achieving superior scalability, robustness, and overall system performance while maintaining reliable performance despite changes in the number of participating vehicles.
Abstract:Addressing pedestrian safety at intersections is one of the paramount concerns in the field of transportation research, driven by the urgency of reducing traffic-related injuries and fatalities. With advances in computer vision technologies and predictive models, the pursuit of developing real-time proactive protection systems is increasingly recognized as vital to improving pedestrian safety at intersections. The core of these protection systems lies in the prediction-based evaluation of pedestrian's potential risks, which plays a significant role in preventing the occurrence of accidents. The major challenges in the current prediction-based potential risk evaluation research can be summarized into three aspects: the inadequate progress in creating a real-time framework for the evaluation of pedestrian's potential risks, the absence of accurate and explainable safety indicators that can represent the potential risk, and the lack of tailor-made evaluation criteria specifically for each category of pedestrians. To address these research challenges, in this study, a framework with computer vision technologies and predictive models is developed to evaluate the potential risk of pedestrians in real time. Integral to this framework is a novel surrogate safety measure, the Predicted Post-Encroachment Time (P-PET), derived from deep learning models capable to predict the arrival time of pedestrians and vehicles at intersections. To further improve the effectiveness and reliability of pedestrian risk evaluation, we classify pedestrians into distinct categories and apply specific evaluation criteria for each group. The results demonstrate the framework's ability to effectively identify potential risks through the use of P-PET, indicating its feasibility for real-time applications and its improved performance in risk evaluation across different categories of pedestrians.
Abstract:Deep probabilistic time series forecasting has gained significant attention due to its ability to provide valuable uncertainty quantification for decision-making tasks. However, many existing models oversimplify the problem by assuming the error process is time-independent, thereby overlooking the serial correlation in the error process. This oversight can potentially diminish the accuracy of the forecasts, rendering these models less effective for decision-making purposes. To overcome this limitation, we propose an innovative training method that incorporates error autocorrelation to enhance the accuracy of probabilistic forecasting. Our method involves constructing a mini-batch as a collection of $D$ consecutive time series segments for model training and explicitly learning a covariance matrix over each mini-batch that encodes the error correlation among adjacent time steps. The resulting covariance matrix can be used to improve prediction accuracy and enhance uncertainty quantification. We evaluate our method using DeepAR on multiple public datasets, and the experimental results confirm that our framework can effectively capture the error autocorrelation and enhance probabilistic forecasting.
Abstract:A common assumption in deep learning-based multivariate and multistep traffic time series forecasting models is that residuals are independent, isotropic, and uncorrelated in space and time. While this assumption provides a straightforward loss function (such as MAE/MSE), it is inevitable that residual processes will exhibit strong autocorrelation and structured spatiotemporal correlation. In this paper, we propose a complementary dynamic regression (DR) framework to enhance existing deep multistep traffic forecasting frameworks through structured specifications and learning for the residual process. Specifically, we assume the residuals of the base model (i.e., a well-developed traffic forecasting model) are governed by a matrix-variate seasonal autoregressive (AR) model, which can be seamlessly integrated into the training process by redesigning the overall loss function. Parameters in the DR framework can be jointly learned with the base model. We evaluate the effectiveness of the proposed framework in enhancing several state-of-the-art deep traffic forecasting models on both speed and flow datasets. Our experiment results show that the DR framework not only improves existing traffic forecasting models but also offers interpretable regression coefficients and spatiotemporal covariance matrices.
Abstract:Existing deep learning-based traffic forecasting models are mainly trained with MSE (or MAE) as the loss function, assuming that residuals/errors follow independent and isotropic Gaussian (or Laplacian) distribution for simplicity. However, this assumption rarely holds for real-world traffic forecasting tasks, where the unexplained residuals are often correlated in both space and time. In this study, we propose Spatiotemporal Residual Regularization by modeling residuals with a dynamic (e.g., time-varying) mixture of zero-mean multivariate Gaussian distribution with learnable spatiotemporal covariance matrices. This approach allows us to directly capture spatiotemporally correlated residuals. For scalability, we model the spatiotemporal covariance for each mixture component using a Kronecker product structure, which significantly reduces the number of parameters and computation complexity. We evaluate the performance of the proposed method on a traffic speed forecasting task. Our results show that, by properly modeling residual distribution, the proposed method not only improves the model performance but also provides interpretable structures.
Abstract:The mortality rate for pedestrians using wheelchairs was 36% higher than the overall population pedestrian mortality rate. However, there is no data to clarify the pedestrians' categories in both fatal and nonfatal accidents, since police reports often do not keep a record of whether a victim was using a wheelchair or has a disability. Currently, real-time detection of vulnerable road users using advanced traffic sensors installed at the infrastructure side has a great potential to significantly improve traffic safety at the intersection. In this research, we develop a systematic framework with a combination of machine learning and deep learning models to distinguish disabled people from normal walk pedestrians and predict the time needed to reach the next side of the intersection. The proposed framework shows high performance both at vulnerable user classification and arrival time prediction accuracy.
Abstract:A `trajectory' refers to a trace generated by a moving object in geographical spaces, usually represented by of a series of chronologically ordered points, where each point consists of a geo-spatial coordinate set and a timestamp. Rapid advancements in location sensing and wireless communication technology enabled us to collect and store a massive amount of trajectory data. As a result, many researchers use trajectory data to analyze mobility of various moving objects. In this dissertation, we focus on the `urban vehicle trajectory,' which refers to trajectories of vehicles in urban traffic networks, and we focus on `urban vehicle trajectory analytics.' The urban vehicle trajectory analytics offers unprecedented opportunities to understand vehicle movement patterns in urban traffic networks including both user-centric travel experiences and system-wide spatiotemporal patterns. The spatiotemporal features of urban vehicle trajectory data are structurally correlated with each other, and consequently, many previous researchers used various methods to understand this structure. Especially, deep-learning models are getting attentions of many researchers due to its powerful function approximation and feature representation abilities. As a result, the objective of this dissertation is to develop deep-learning based models for urban vehicle trajectory analytics to better understand the mobility patterns of urban traffic networks. Particularly, this dissertation focuses on two research topics, which has high necessity, importance and applicability: Next Location Prediction, and Synthetic Trajectory Generation. In this study, we propose various novel models for urban vehicle trajectory analytics using deep learning.
Abstract:In many trajectory-based applications, it is necessary to map raw GPS trajectories onto road networks in digital maps, which is commonly referred to as a map-matching process. While most previous map-matching methods have focused on using rule-based algorithms to deal with the map-matching problems, in this paper, we consider the map-matching task from the data perspective, proposing a deep learning-based map-matching model. We build a Transformer-based map-matching model with a transfer learning approach. We generate synthetic trajectory data to pre-train the Transformer model and then fine-tune the model with a limited number of ground-truth data to minimize the model development cost and reduce the real-to-virtual gap. Three metrics (Average Hamming Distance, F-score, and BLEU) at two levels (point and segment level) are used to evaluate the model performance. The results indicate that the proposed model outperforms existing models. Furthermore, we use the attention weights of the Transformer to plot the map-matching process and find how the model matches the road segments correctly.