Abstract:We study $\textit{sparse singular value certificates}$ for random rectangular matrices. If $M$ is an $n \times d$ matrix with independent Gaussian entries, we give a new family of polynomial-time algorithms which can certify upper bounds on the maximum of $\|M u\|$, where $u$ is a unit vector with at most $\eta n$ nonzero entries for a given $\eta \in (0,1)$. This basic algorithmic primitive lies at the heart of a wide range of problems across algorithmic statistics and theoretical computer science. Our algorithms certify a bound which is asymptotically smaller than the naive one, given by the maximum singular value of $M$, for nearly the widest-possible range of $n,d,$ and $\eta$. Efficiently certifying such a bound for a range of $n,d$ and $\eta$ which is larger by any polynomial factor than what is achieved by our algorithm would violate lower bounds in the SQ and low-degree polynomials models. Our certification algorithm makes essential use of the Sum-of-Squares hierarchy. To prove the correctness of our algorithm, we develop a new combinatorial connection between the graph matrix approach to analyze random matrices with dependent entries, and the Efron-Stein decomposition of functions of independent random variables. As applications of our certification algorithm, we obtain new efficient algorithms for a wide range of well-studied algorithmic tasks. In algorithmic robust statistics, we obtain new algorithms for robust mean and covariance estimation with tradeoffs between breakdown point and sample complexity, which are nearly matched by SQ and low-degree polynomial lower bounds (that we establish). We also obtain new polynomial-time guarantees for certification of $\ell_1/\ell_2$ distortion of random subspaces of $\mathbb{R}^n$ (also with nearly matching lower bounds), sparse principal component analysis, and certification of the $2\rightarrow p$ norm of a random matrix.
Abstract:We prove that there is a universal constant $C>0$ so that for every $d \in \mathbb N$, every centered subgaussian distribution $\mathcal D$ on $\mathbb R^d$, and every even $p \in \mathbb N$, the $d$-variate polynomial $(Cp)^{p/2} \cdot \|v\|_{2}^p - \mathbb E_{X \sim \mathcal D} \langle v,X\rangle^p$ is a sum of square polynomials. This establishes that every subgaussian distribution is \emph{SoS-certifiably subgaussian} -- a condition that yields efficient learning algorithms for a wide variety of high-dimensional statistical tasks. As a direct corollary, we obtain computationally efficient algorithms with near-optimal guarantees for the following tasks, when given samples from an arbitrary subgaussian distribution: robust mean estimation, list-decodable mean estimation, clustering mean-separated mixture models, robust covariance-aware mean estimation, robust covariance estimation, and robust linear regression. Our proof makes essential use of Talagrand's generic chaining/majorizing measures theorem.
Abstract:It has recently been discovered that the conclusions of many highly influential econometrics studies can be overturned by removing a very small fraction of their samples (often less than $0.5\%$). These conclusions are typically based on the results of one or more Ordinary Least Squares (OLS) regressions, raising the question: given a dataset, can we certify the robustness of an OLS fit on this dataset to the removal of a given number of samples? Brute-force techniques quickly break down even on small datasets. Existing approaches which go beyond brute force either can only find candidate small subsets to remove (but cannot certify their non-existence) [BGM20, KZC21], are computationally intractable beyond low dimensional settings [MR22], or require very strong assumptions on the data distribution and too many samples to give reasonable bounds in practice [BP21, FH23]. We present an efficient algorithm for certifying the robustness of linear regressions to removals of samples. We implement our algorithm and run it on several landmark econometrics datasets with hundreds of dimensions and tens of thousands of samples, giving the first non-trivial certificates of robustness to sample removal for datasets of dimension $4$ or greater. We prove that under distributional assumptions on a dataset, the bounds produced by our algorithm are tight up to a $1 + o(1)$ multiplicative factor.
Abstract:We introduce and study the problem of posterior inference on tree-structured graphical models in the presence of a malicious adversary who can corrupt some observed nodes. In the well-studied broadcasting on trees model, corresponding to the ferromagnetic Ising model on a $d$-regular tree with zero external field, when a natural signal-to-noise ratio exceeds one (the celebrated Kesten-Stigum threshold), the posterior distribution of the root given the leaves is bounded away from $\mathrm{Ber}(1/2)$, and carries nontrivial information about the sign of the root. This posterior distribution can be computed exactly via dynamic programming, also known as belief propagation. We first confirm a folklore belief that a malicious adversary who can corrupt an inverse-polynomial fraction of the leaves of their choosing makes this inference impossible. Our main result is that accurate posterior inference about the root vertex given the leaves is possible when the adversary is constrained to make corruptions at a $\rho$-fraction of randomly-chosen leaf vertices, so long as the signal-to-noise ratio exceeds $O(\log d)$ and $\rho \leq c \varepsilon$ for some universal $c > 0$. Since inference becomes information-theoretically impossible when $\rho \gg \varepsilon$, this amounts to an information-theoretically optimal fraction of corruptions, up to a constant multiplicative factor. Furthermore, we show that the canonical belief propagation algorithm performs this inference.
Abstract:Multi-dimensional Scaling (MDS) is a family of methods for embedding pair-wise dissimilarities between $n$ objects into low-dimensional space. MDS is widely used as a data visualization tool in the social and biological sciences, statistics, and machine learning. We study the Kamada-Kawai formulation of MDS: given a set of non-negative dissimilarities $\{d_{i,j}\}_{i , j \in [n]}$ over $n$ points, the goal is to find an embedding $\{x_1,\dots,x_n\} \subset \mathbb{R}^k$ that minimizes \[ \text{OPT} = \min_{x} \mathbb{E}_{i,j \in [n]} \left[ \left(1-\frac{\|x_i - x_j\|}{d_{i,j}}\right)^2 \right] \] Despite its popularity, our theoretical understanding of MDS is extremely limited. Recently, Demaine, Hesterberg, Koehler, Lynch, and Urschel (arXiv:2109.11505) gave the first approximation algorithm with provable guarantees for Kamada-Kawai, which achieves an embedding with cost $\text{OPT} +\epsilon$ in $n^2 \cdot 2^{\tilde{\mathcal{O}}(k \Delta^4 / \epsilon^2)}$ time, where $\Delta$ is the aspect ratio of the input dissimilarities. In this work, we give the first approximation algorithm for MDS with quasi-polynomial dependency on $\Delta$: for target dimension $k$, we achieve a solution with cost $\mathcal{O}(\text{OPT}^{ \hspace{0.04in}1/k } \cdot \log(\Delta/\epsilon) )+ \epsilon$ in time $n^{ \mathcal{O}(1)} \cdot 2^{\tilde{\mathcal{O}}( k^2 (\log(\Delta)/\epsilon)^{k/2 + 1} ) }$. Our approach is based on a novel analysis of a conditioning-based rounding scheme for the Sherali-Adams LP Hierarchy. Crucially, our analysis exploits the geometry of low-dimensional Euclidean space, allowing us to avoid an exponential dependence on the aspect ratio $\Delta$. We believe our geometry-aware treatment of the Sherali-Adams Hierarchy is an important step towards developing general-purpose techniques for efficient metric optimization algorithms.
Abstract:We investigate practical algorithms to find or disprove the existence of small subsets of a dataset which, when removed, reverse the sign of a coefficient in an ordinary least squares regression involving that dataset. We empirically study the performance of well-established algorithmic techniques for this task -- mixed integer quadratically constrained optimization for general linear regression problems and exact greedy methods for special cases. We show that these methods largely outperform the state of the art and provide a useful robustness check for regression problems in a few dimensions. However, significant computational bottlenecks remain, especially for the important task of disproving the existence of such small sets of influential samples for regression problems of dimension $3$ or greater. We make some headway on this challenge via a spectral algorithm using ideas drawn from recent innovations in algorithmic robust statistics. We summarize the limitations of known techniques in several challenge datasets to encourage further algorithmic innovation.
Abstract:We present a fast, differentially private algorithm for high-dimensional covariance-aware mean estimation with nearly optimal sample complexity. Only exponential-time estimators were previously known to achieve this guarantee. Given $n$ samples from a (sub-)Gaussian distribution with unknown mean $\mu$ and covariance $\Sigma$, our $(\varepsilon,\delta)$-differentially private estimator produces $\tilde{\mu}$ such that $\|\mu - \tilde{\mu}\|_{\Sigma} \leq \alpha$ as long as $n \gtrsim \tfrac d {\alpha^2} + \tfrac{d \sqrt{\log 1/\delta}}{\alpha \varepsilon}+\frac{d\log 1/\delta}{\varepsilon}$. The Mahalanobis error metric $\|\mu - \hat{\mu}\|_{\Sigma}$ measures the distance between $\hat \mu$ and $\mu$ relative to $\Sigma$; it characterizes the error of the sample mean. Our algorithm runs in time $\tilde{O}(nd^{\omega - 1} + nd/\varepsilon)$, where $\omega < 2.38$ is the matrix multiplication exponent. We adapt an exponential-time approach of Brown, Gaboardi, Smith, Ullman, and Zakynthinou (2021), giving efficient variants of stable mean and covariance estimation subroutines that also improve the sample complexity to the nearly optimal bound above. Our stable covariance estimator can be turned to private covariance estimation for unrestricted subgaussian distributions. With $n\gtrsim d^{3/2}$ samples, our estimate is accurate in spectral norm. This is the first such algorithm using $n= o(d^2)$ samples, answering an open question posed by Alabi et al. (2022). With $n\gtrsim d^2$ samples, our estimate is accurate in Frobenius norm. This leads to a fast, nearly optimal algorithm for private learning of unrestricted Gaussian distributions in TV distance. Duchi, Haque, and Kuditipudi (2023) obtained similar results independently and concurrently.
Abstract:We study the relationship between adversarial robustness and differential privacy in high-dimensional algorithmic statistics. We give the first black-box reduction from privacy to robustness which can produce private estimators with optimal tradeoffs among sample complexity, accuracy, and privacy for a wide range of fundamental high-dimensional parameter estimation problems, including mean and covariance estimation. We show that this reduction can be implemented in polynomial time in some important special cases. In particular, using nearly-optimal polynomial-time robust estimators for the mean and covariance of high-dimensional Gaussians which are based on the Sum-of-Squares method, we design the first polynomial-time private estimators for these problems with nearly-optimal samples-accuracy-privacy tradeoffs. Our algorithms are also robust to a constant fraction of adversarially-corrupted samples.
Abstract:We establish a simple connection between robust and differentially-private algorithms: private mechanisms which perform well with very high probability are automatically robust in the sense that they retain accuracy even if a constant fraction of the samples they receive are adversarially corrupted. Since optimal mechanisms typically achieve these high success probabilities, our results imply that optimal private mechanisms for many basic statistics problems are robust. We investigate the consequences of this observation for both algorithms and computational complexity across different statistical problems. Assuming the Brennan-Bresler secret-leakage planted clique conjecture, we demonstrate a fundamental tradeoff between computational efficiency, privacy leakage, and success probability for sparse mean estimation. Private algorithms which match this tradeoff are not yet known -- we achieve that (up to polylogarithmic factors) in a polynomially-large range of parameters via the Sum-of-Squares method. To establish an information-computation gap for private sparse mean estimation, we also design new (exponential-time) mechanisms using fewer samples than efficient algorithms must use. Finally, we give evidence for privacy-induced information-computation gaps for several other statistics and learning problems, including PAC learning parity functions and estimation of the mean of a multivariate Gaussian.
Abstract:Many high-dimensional statistical inference problems are believed to possess inherent computational hardness. Various frameworks have been proposed to give rigorous evidence for such hardness, including lower bounds against restricted models of computation (such as low-degree functions), as well as methods rooted in statistical physics that are based on free energy landscapes. This paper aims to make a rigorous connection between the seemingly different low-degree and free-energy based approaches. We define a free-energy based criterion for hardness and formally connect it to the well-established notion of low-degree hardness for a broad class of statistical problems, namely all Gaussian additive models and certain models with a sparse planted signal. By leveraging these rigorous connections we are able to: establish that for Gaussian additive models the "algebraic" notion of low-degree hardness implies failure of "geometric" local MCMC algorithms, and provide new low-degree lower bounds for sparse linear regression which seem difficult to prove directly. These results provide both conceptual insights into the connections between different notions of hardness, as well as concrete technical tools such as new methods for proving low-degree lower bounds.