Abstract:This work deals with the challenge of learning and reasoning over multi-modal multi-hop question answering (QA). We propose a graph reasoning network based on the semantic structure of the sentences to learn multi-source reasoning paths and find the supporting facts across both image and text modalities for answering the question. In this paper, we investigate the importance of graph structure for multi-modal multi-hop question answering. Our analysis is centered on WebQA. We construct a strong baseline model, that finds relevant sources using a pairwise classification task. We establish that, with the proper use of feature representations from pre-trained models, graph structure helps in improving multi-modal multi-hop question answering. We point out that both graph structure and adjacency matrix are task-related prior knowledge, and graph structure can be leveraged to improve the retrieval performance for the task. Experiments and visualized analysis demonstrate that message propagation over graph networks or the entire graph structure can replace massive multimodal transformers with token-wise cross-attention. We demonstrated the applicability of our method and show a performance gain of \textbf{4.6$\%$} retrieval F1score over the transformer baselines, despite being a very light model. We further demonstrated the applicability of our model to a large scale retrieval setting.
Abstract:Cross-lingual information retrieval (CLIR) ~\cite{shi2021cross, asai2021one, jiang2020cross} for example, can find relevant text in any language such as English(high resource) or Telugu (low resource) even when the query is posed in a different, possibly low-resource, language. In this work, we aim to develop useful CLIR models for this constrained, yet important, setting where we do not require any kind of additional supervision or labelled data for retrieval task and hence can work effectively for low-resource languages. \par We propose a simple and effective re-ranking method for improving passage retrieval in open question answering. The re-ranker re-scores retrieved passages with a zero-shot multilingual question generation model, which is a pre-trained language model, to compute the probability of the input question in the target language conditioned on a retrieved passage, which can be possibly in a different language. We evaluate our method in a completely zero shot setting and doesn't require any training. Thus the main advantage of our method is that our approach can be used to re-rank results obtained by any sparse retrieval methods like BM-25. This eliminates the need for obtaining expensive labelled corpus required for the retrieval tasks and hence can be used for low resource languages.
Abstract:How can Large Language Models (LLMs) be aligned with human intentions and values? A typical solution is to gather human preference on model outputs and finetune the LLMs accordingly while ensuring that updates do not deviate too far from a reference model. Recent approaches, such as direct preference optimization (DPO), have eliminated the need for unstable and sluggish reinforcement learning optimization by introducing close-formed supervised losses. However, a significant limitation of the current approach is its design for a single reference model only, neglecting to leverage the collective power of numerous pretrained LLMs. To overcome this limitation, we introduce a novel closed-form formulation for direct preference optimization using multiple reference models. The resulting algorithm, Multi-Reference Preference Optimization (MRPO), leverages broader prior knowledge from diverse reference models, substantially enhancing preference learning capabilities compared to the single-reference DPO. Our experiments demonstrate that LLMs finetuned with MRPO generalize better in various preference data, regardless of data scarcity or abundance. Furthermore, MRPO effectively finetunes LLMs to exhibit superior performance in several downstream natural language processing tasks such as GSM8K and TruthfulQA.
Abstract:For green AI, it is crucial to measure and reduce the carbon footprint emitted during the training of large language models. In NLP, performing pre-training on Transformer models requires significant computational resources. This pre-training involves using a large amount of text data to gain prior knowledge for performing downstream tasks. Thus, it is important that we select the correct data in the form of domain-specific data from this vast corpus to achieve optimum results aligned with our domain-specific tasks. While training on large unsupervised data is expensive, it can be optimized by performing a data selection step before pretraining. Selecting important data reduces the space overhead and the substantial amount of time required to pre-train the model while maintaining constant accuracy. We investigate the existing selection strategies and propose our own domain-adaptive data selection method - TextGram - that effectively selects essential data from large corpora. We compare and evaluate the results of finetuned models for text classification task with and without data selection. We show that the proposed strategy works better compared to other selection methods.
Abstract:The availability of text or topic classification datasets in the low-resource Marathi language is limited, typically consisting of fewer than 4 target labels, with some achieving nearly perfect accuracy. In this work, we introduce L3Cube-MahaNews, a Marathi text classification corpus that focuses on News headlines and articles. This corpus stands out as the largest supervised Marathi Corpus, containing over 1.05L records classified into a diverse range of 12 categories. To accommodate different document lengths, MahaNews comprises three supervised datasets specifically designed for short text, long documents, and medium paragraphs. The consistent labeling across these datasets facilitates document length-based analysis. We provide detailed data statistics and baseline results on these datasets using state-of-the-art pre-trained BERT models. We conduct a comparative analysis between monolingual and multilingual BERT models, including MahaBERT, IndicBERT, and MuRIL. The monolingual MahaBERT model outperforms all others on every dataset. These resources also serve as Marathi topic classification datasets or models and are publicly available at https://github.com/l3cube-pune/MarathiNLP .
Abstract:We present mahaNLP, an open-source natural language processing (NLP) library specifically built for the Marathi language. It aims to enhance the support for the low-resource Indian language Marathi in the field of NLP. It is an easy-to-use, extensible, and modular toolkit for Marathi text analysis built on state-of-the-art MahaBERT-based transformer models. Our work holds significant importance as other existing Indic NLP libraries provide basic Marathi processing support and rely on older models with restricted performance. Our toolkit stands out by offering a comprehensive array of NLP tasks, encompassing both fundamental preprocessing tasks and advanced NLP tasks like sentiment analysis, NER, hate speech detection, and sentence completion. This paper focuses on an overview of the mahaNLP framework, its features, and its usage. This work is a part of the L3Cube MahaNLP initiative, more information about it can be found at https://github.com/l3cube-pune/MarathiNLP .