Abstract:We present Agent S, an open agentic framework that enables autonomous interaction with computers through a Graphical User Interface (GUI), aimed at transforming human-computer interaction by automating complex, multi-step tasks. Agent S aims to address three key challenges in automating computer tasks: acquiring domain-specific knowledge, planning over long task horizons, and handling dynamic, non-uniform interfaces. To this end, Agent S introduces experience-augmented hierarchical planning, which learns from external knowledge search and internal experience retrieval at multiple levels, facilitating efficient task planning and subtask execution. In addition, it employs an Agent-Computer Interface (ACI) to better elicit the reasoning and control capabilities of GUI agents based on Multimodal Large Language Models (MLLMs). Evaluation on the OSWorld benchmark shows that Agent S outperforms the baseline by 9.37% on success rate (an 83.6% relative improvement) and achieves a new state-of-the-art. Comprehensive analysis highlights the effectiveness of individual components and provides insights for future improvements. Furthermore, Agent S demonstrates broad generalizability to different operating systems on a newly-released WindowsAgentArena benchmark. Code available at https://github.com/simular-ai/Agent-S.
Abstract:A pivotal aim in contemporary AI research is to develop agents proficient in multi-agent coordination, enabling effective collaboration with both humans and other systems. Large Language Models (LLMs), with their notable ability to understand, generate, and interpret language in a human-like manner, stand out as promising candidates for the development of such agents. In this study, we build and assess the effectiveness of agents crafted using LLMs in various coordination scenarios. We introduce the LLM-Coordination (LLM-Co) Framework, specifically designed to enable LLMs to play coordination games. With the LLM-Co framework, we conduct our evaluation with three game environments and organize the evaluation into five aspects: Theory of Mind, Situated Reasoning, Sustained Coordination, Robustness to Partners, and Explicit Assistance. First, the evaluation of the Theory of Mind and Situated Reasoning reveals the capabilities of LLM to infer the partner's intention and reason actions accordingly. Then, the evaluation around Sustained Coordination and Robustness to Partners further showcases the ability of LLMs to coordinate with an unknown partner in complex long-horizon tasks, outperforming Reinforcement Learning baselines. Lastly, to test Explicit Assistance, which refers to the ability of an agent to offer help proactively, we introduce two novel layouts into the Overcooked-AI benchmark, examining if agents can prioritize helping their partners, sacrificing time that could have been spent on their tasks. This research underscores the promising capabilities of LLMs in sophisticated coordination environments and reveals the potential of LLMs in building strong real-world agents for multi-agent coordination.
Abstract:We present an exploratory qualitative study to understand how writers interact with next-phrase suggestions. While there has been some quantitative research on the effects of suggestion systems on writing, there has been little qualitative work to understand how writers interact with suggestion systems and how it affects their writing process - specifically for a non-native but English writer. We conducted a study where amateur writers were asked to write two movie reviews each, one without suggestions and one with. We found writers interact with next-phrase suggestions in various complex ways - writers are able to abstract multiple parts of the suggestions and incorporate them within their writing - even when they disagree with the suggestion as a whole. The suggestion system also had various effects on the writing processes - contributing to different aspects of the writing process in unique ways. We propose a model of writer-suggestion interaction for writing with GPT-2 for a movie review writing task, followed by ways in which the model can be used for future research, along with outlining opportunities for research and design.