Abstract:In the field of computational advertising, the integration of ads into the outputs of large language models (LLMs) presents an opportunity to support these services without compromising content integrity. This paper introduces novel auction mechanisms for ad allocation and pricing within the textual outputs of LLMs, leveraging retrieval-augmented generation (RAG). We propose a segment auction where an ad is probabilistically retrieved for each discourse segment (paragraph, section, or entire output) according to its bid and relevance, following the RAG framework, and priced according to competing bids. We show that our auction maximizes logarithmic social welfare, a new notion of welfare that balances allocation efficiency and fairness, and we characterize the associated incentive-compatible pricing rule. These results are extended to multi-ad allocation per segment. An empirical evaluation validates the feasibility and effectiveness of our approach over several ad auction scenarios, and exhibits inherent tradeoffs in metrics as we allow the LLM more flexibility to allocate ads.
Abstract:The display advertising industry has recently transitioned from second- to first-price auctions as its primary mechanism for ad allocation and pricing. In light of this, publishers need to re-evaluate and optimize their auction parameters, notably reserve prices. In this paper, we propose a gradient-based algorithm to adaptively update and optimize reserve prices based on estimates of bidders' responsiveness to experimental shocks in reserves. Our key innovation is to draw on the inherent structure of the revenue objective in order to reduce the variance of gradient estimates and improve convergence rates in both theory and practice. We show that revenue in a first-price auction can be usefully decomposed into a \emph{demand} component and a \emph{bidding} component, and introduce techniques to reduce the variance of each component. We characterize the bias-variance trade-offs of these techniques and validate the performance of our proposed algorithm through experiments on synthetic data and real display ad auctions data from Google ad exchange.
Abstract:The problem of market clearing is to set a price for an item such that quantity demanded equals quantity supplied. In this work, we cast the problem of predicting clearing prices into a learning framework and use the resulting models to perform revenue optimization in auctions and markets with contextual information. The economic intuition behind market clearing allows us to obtain fine-grained control over the aggressiveness of the resulting pricing policy, grounded in theory. To evaluate our approach, we fit a model of clearing prices over a massive dataset of bids in display ad auctions from a major ad exchange. The learned prices outperform other modeling techniques in the literature in terms of revenue and efficiency trade-offs. Because of the convex nature of the clearing loss function, the convergence rate of our method is as fast as linear regression.
Abstract:We cast the problem of combinatorial auction design in a Bayesian framework in order to incorporate prior information into the auction process and minimize the number of rounds to convergence. We first develop a generative model of agent valuations and market prices such that clearing prices become maximum a posteriori estimates given observed agent valuations. This generative model then forms the basis of an auction process which alternates between refining estimates of agent valuations and computing candidate clearing prices. We provide an implementation of the auction using assumed density filtering to estimate valuations and expectation maximization to compute prices. An empirical evaluation over a range of valuation domains demonstrates that our Bayesian auction mechanism is highly competitive against the combinatorial clock auction in terms of rounds to convergence, even under the most favorable choices of price increment for this baseline.
Abstract:We present a new combinatorial market maker that operates arbitrage-free combinatorial prediction markets specified by integer programs. Although the problem of arbitrage-free pricing, while maintaining a bound on the subsidy provided by the market maker, is #P-hard in the worst case, we posit that the typical case might be amenable to modern integer programming (IP) solvers. At the crux of our method is the Frank-Wolfe (conditional gradient) algorithm which is used to implement a Bregman projection aligned with the market maker's cost function, using an IP solver as an oracle. We demonstrate the tractability and improved accuracy of our approach on real-world prediction market data from combinatorial bets placed on the 2010 NCAA Men's Division I Basketball Tournament, where the outcome space is of size 2^63. To our knowledge, this is the first implementation and empirical evaluation of an arbitrage-free combinatorial prediction market on this scale.
Abstract:We consider the design of prediction market mechanisms known as automated market makers. We show that we can design these mechanisms via the mold of \emph{exponential family distributions}, a popular and well-studied probability distribution template used in statistics. We give a full development of this relationship and explore a range of benefits. We draw connections between the information aggregation of market prices and the belief aggregation of learning agents that rely on exponential family distributions. We develop a very natural analysis of the market behavior as well as the price equilibrium under the assumption that the traders exhibit risk aversion according to exponential utility. We also consider similar aspects under alternative models, such as when traders are budget constrained.