Abstract:We initiate the study of the submodular cover problem in dynamic setting where the elements of the ground set are inserted and deleted. In the classical submodular cover problem, we are given a monotone submodular function $f : 2^{V} \to \mathbb{R}^{\ge 0}$ and the goal is to obtain a set $S \subseteq V$ that minimizes the cost subject to the constraint $f(S) = f(V)$. This is a classical problem in computer science and generalizes the Set Cover problem, 2-Set Cover, and dominating set problem among others. We consider this problem in a dynamic setting where there are updates to our set $V$, in the form of insertions and deletions of elements from a ground set $\mathcal{V}$, and the goal is to maintain an approximately optimal solution with low query complexity per update. For this problem, we propose a randomized algorithm that, in expectation, obtains a $(1-O(\epsilon), O(\epsilon^{-1}))$-bicriteria approximation using polylogarithmic query complexity per update.
Abstract:In the field of computational advertising, the integration of ads into the outputs of large language models (LLMs) presents an opportunity to support these services without compromising content integrity. This paper introduces novel auction mechanisms for ad allocation and pricing within the textual outputs of LLMs, leveraging retrieval-augmented generation (RAG). We propose a segment auction where an ad is probabilistically retrieved for each discourse segment (paragraph, section, or entire output) according to its bid and relevance, following the RAG framework, and priced according to competing bids. We show that our auction maximizes logarithmic social welfare, a new notion of welfare that balances allocation efficiency and fairness, and we characterize the associated incentive-compatible pricing rule. These results are extended to multi-ad allocation per segment. An empirical evaluation validates the feasibility and effectiveness of our approach over several ad auction scenarios, and exhibits inherent tradeoffs in metrics as we allow the LLM more flexibility to allocate ads.
Abstract:We consider the setting of repeated fair division between two players, denoted Alice and Bob, with private valuations over a cake. In each round, a new cake arrives, which is identical to the ones in previous rounds. Alice cuts the cake at a point of her choice, while Bob chooses the left piece or the right piece, leaving the remainder for Alice. We consider two versions: sequential, where Bob observes Alice's cut point before choosing left/right, and simultaneous, where he only observes her cut point after making his choice. The simultaneous version was first considered by Aumann and Maschler (1995). We observe that if Bob is almost myopic and chooses his favorite piece too often, then he can be systematically exploited by Alice through a strategy akin to a binary search. This strategy allows Alice to approximate Bob's preferences with increasing precision, thereby securing a disproportionate share of the resource over time. We analyze the limits of how much a player can exploit the other one and show that fair utility profiles are in fact achievable. Specifically, the players can enforce the equitable utility profile of $(1/2, 1/2)$ in the limit on every trajectory of play, by keeping the other player's utility to approximately $1/2$ on average while guaranteeing they themselves get at least approximately $1/2$ on average. We show this theorem using a connection with Blackwell approachability. Finally, we analyze a natural dynamic known as fictitious play, where players best respond to the empirical distribution of the other player. We show that fictitious play converges to the equitable utility profile of $(1/2, 1/2)$ at a rate of $O(1/\sqrt{T})$.
Abstract:We study a problem of designing replication-proof bandit mechanisms when agents strategically register or replicate their own arms to maximize their payoff. We consider Bayesian agents who are unaware of ex-post realization of their own arms' mean rewards, which is the first to study Bayesian extension of Shin et al. (2022). This extension presents significant challenges in analyzing equilibrium, in contrast to the fully-informed setting by Shin et al. (2022) under which the problem simply reduces to a case where each agent only has a single arm. With Bayesian agents, even in a single-agent setting, analyzing the replication-proofness of an algorithm becomes complicated. Remarkably, we first show that the algorithm proposed by Shin et al. (2022), defined H-UCB, is no longer replication-proof for any exploration parameters. Then, we provide sufficient and necessary conditions for an algorithm to be replication-proof in the single-agent setting. These results centers around several analytical results in comparing the expected regret of multiple bandit instances, which might be of independent interest. We further prove that exploration-then-commit (ETC) algorithm satisfies these properties, whereas UCB does not, which in fact leads to the failure of being replication-proof. We expand this result to multi-agent setting, and provide a replication-proof algorithm for any problem instance. The proof mainly relies on the single-agent result, as well as some structural properties of ETC and the novel introduction of a restarting round, which largely simplifies the analysis while maintaining the regret unchanged (up to polylogarithmic factor). We finalize our result by proving its sublinear regret upper bound, which matches that of H-UCB.
Abstract:Research in fair machine learning, and particularly clustering, has been crucial in recent years given the many ethical controversies that modern intelligent systems have posed. Ahmadian et al. [2020] established the study of fairness in \textit{hierarchical} clustering, a stronger, more structured variant of its well-known flat counterpart, though their proposed algorithm that optimizes for Dasgupta's [2016] famous cost function was highly theoretical. Knittel et al. [2023] then proposed the first practical fair approximation for cost, however they were unable to break the polynomial-approximate barrier they posed as a hurdle of interest. We break this barrier, proposing the first truly polylogarithmic-approximate low-cost fair hierarchical clustering, thus greatly bridging the gap between the best fair and vanilla hierarchical clustering approximations.
Abstract:This paper explores the potential for leveraging Large Language Models (LLM) in the realm of online advertising systems. We delve into essential requirements including privacy, latency, reliability, users and advertisers' satisfaction, which such a system must fulfill. We further introduce a general framework for LLM advertisement, consisting of modification, bidding, prediction, and auction modules. Different design considerations for each module is presented, with an in-depth examination of their practicality and the technical challenges inherent to their implementation.
Abstract:Maximizing submodular functions has been increasingly used in many applications of machine learning, such as data summarization, recommendation systems, and feature selection. Moreover, there has been a growing interest in both submodular maximization and dynamic algorithms. In 2020, Monemizadeh and Lattanzi, Mitrovic, Norouzi{-}Fard, Tarnawski, and Zadimoghaddam initiated developing dynamic algorithms for the monotone submodular maximization problem under the cardinality constraint $k$. Recently, there have been some improvements on the topic made by Banihashem, Biabani, Goudarzi, Hajiaghayi, Jabbarzade, and Monemizadeh. In 2022, Chen and Peng studied the complexity of this problem and raised an important open question: "Can we extend [fully dynamic] results (algorithm or hardness) to non-monotone submodular maximization?". We affirmatively answer their question by demonstrating a reduction from maximizing a non-monotone submodular function under the cardinality constraint $k$ to maximizing a monotone submodular function under the same constraint. Through this reduction, we obtain the first dynamic algorithms to solve the non-monotone submodular maximization problem under the cardinality constraint $k$. Our algorithms maintain an $(8+\epsilon)$-approximate of the solution and use expected amortized $O(\epsilon^{-3}k^3\log^3(n)\log(k))$ or $O(\epsilon^{-1}k^2\log^3(k))$ oracle queries per update, respectively. Furthermore, we showcase the benefits of our dynamic algorithm for video summarization and max-cut problems on several real-world data sets.
Abstract:We present an oracle-efficient relaxation for the adversarial contextual bandits problem, where the contexts are sequentially drawn i.i.d from a known distribution and the cost sequence is chosen by an online adversary. Our algorithm has a regret bound of $O(T^{\frac{2}{3}}(K\log(|\Pi|))^{\frac{1}{3}})$ and makes at most $O(K)$ calls per round to an offline optimization oracle, where $K$ denotes the number of actions, $T$ denotes the number of rounds and $\Pi$ denotes the set of policies. This is the first result to improve the prior best bound of $O((TK)^{\frac{2}{3}}(\log(|\Pi|))^{\frac{1}{3}})$ as obtained by Syrgkanis et al. at NeurIPS 2016, and the first to match the original bound of Langford and Zhang at NeurIPS 2007 which was obtained for the stochastic case.
Abstract:We present a study on a repeated delegated choice problem, which is the first to consider an online learning variant of Kleinberg and Kleinberg, EC'18. In this model, a principal interacts repeatedly with an agent who possesses an exogenous set of solutions to search for efficient ones. Each solution can yield varying utility for both the principal and the agent, and the agent may propose a solution to maximize its own utility in a selfish manner. To mitigate this behavior, the principal announces an eligible set which screens out a certain set of solutions. The principal, however, does not have any information on the distribution of solutions in advance. Therefore, the principal dynamically announces various eligible sets to efficiently learn the distribution. The principal's objective is to minimize cumulative regret compared to the optimal eligible set in hindsight. We explore two dimensions of the problem setup, whether the agent behaves myopically or strategizes across the rounds, and whether the solutions yield deterministic or stochastic utility. Our analysis mainly characterizes some regimes under which the principal can recover the sublinear regret, thereby shedding light on the rise and fall of the repeated delegation procedure in various regimes.
Abstract:Submodular maximization under matroid and cardinality constraints are classical problems with a wide range of applications in machine learning, auction theory, and combinatorial optimization. In this paper, we consider these problems in the dynamic setting where (1) we have oracle access to a monotone submodular function $f: 2^{V} \rightarrow \mathbb{R}^+$ and (2) we are given a sequence $\mathcal{S}$ of insertions and deletions of elements of an underlying ground set $V$. We develop the first parameterized (by the rank $k$ of a matroid $\mathcal{M}$) dynamic $(4+\epsilon)$-approximation algorithm for the submodular maximization problem under the matroid constraint using an expected worst-case $O(k\log(k)\log^3{(k/\epsilon)})$ query complexity where $0 < \epsilon \le 1$. Chen and Peng at STOC'22 studied the complexity of this problem in the insertion-only dynamic model (a restricted version of the fully dynamic model where deletion is not allowed), and they raised the following important open question: *"for fully dynamic streams [sequences of insertions and deletions of elements], there is no known constant-factor approximation algorithm with poly(k) amortized queries for matroid constraints."* Our dynamic algorithm answers this question as well as an open problem of Lattanzi et al. (NeurIPS'20) affirmatively. As a byproduct, for the submodular maximization under the cardinality constraint $k$, we propose a parameterized (by the cardinality constraint $k$) dynamic algorithm that maintains a $(2+\epsilon)$-approximate solution of the sequence $\mathcal{S}$ at any time $t$ using the expected amortized worst-case complexity $O(k\epsilon^{-1}\log^2(k))$. This is the first dynamic algorithm for the problem that has a query complexity independent of the size of ground set $V$.