Abstract:Bias significantly undermines both the accuracy and trustworthiness of machine learning models. To date, one of the strongest biases observed in image classification models is texture bias-where models overly rely on texture information rather than shape information. Yet, existing approaches for measuring and mitigating texture bias have not been able to capture how textures impact model robustness in real-world settings. In this work, we introduce the Texture Association Value (TAV), a novel metric that quantifies how strongly models rely on the presence of specific textures when classifying objects. Leveraging TAV, we demonstrate that model accuracy and robustness are heavily influenced by texture. Our results show that texture bias explains the existence of natural adversarial examples, where over 90% of these samples contain textures that are misaligned with the learned texture of their true label, resulting in confident mispredictions.
Abstract:Adversarial examples, inputs designed to induce worst-case behavior in machine learning models, have been extensively studied over the past decade. Yet, our understanding of this phenomenon stems from a rather fragmented pool of knowledge; at present, there are a handful of attacks, each with disparate assumptions in threat models and incomparable definitions of optimality. In this paper, we propose a systematic approach to characterize worst-case (i.e., optimal) adversaries. We first introduce an extensible decomposition of attacks in adversarial machine learning by atomizing attack components into surfaces and travelers. With our decomposition, we enumerate over components to create 576 attacks (568 of which were previously unexplored). Next, we propose the Pareto Ensemble Attack (PEA): a theoretical attack that upper-bounds attack performance. With our new attacks, we measure performance relative to the PEA on: both robust and non-robust models, seven datasets, and three extended lp-based threat models incorporating compute costs, formalizing the Space of Adversarial Strategies. From our evaluation we find that attack performance to be highly contextual: the domain, model robustness, and threat model can have a profound influence on attack efficacy. Our investigation suggests that future studies measuring the security of machine learning should: (1) be contextualized to the domain & threat models, and (2) go beyond the handful of known attacks used today.
Abstract:Planning algorithms are used in computational systems to direct autonomous behavior. In a canonical application, for example, planning for autonomous vehicles is used to automate the static or continuous planning towards performance, resource management, or functional goals (e.g., arriving at the destination, managing fuel fuel consumption). Existing planning algorithms assume non-adversarial settings; a least-cost plan is developed based on available environmental information (i.e., the input instance). Yet, it is unclear how such algorithms will perform in the face of adversaries attempting to thwart the planner. In this paper, we explore the security of planning algorithms used in cyber- and cyber-physical systems. We present two $\textit{adversarial planning}$ algorithms-one static and one adaptive-that perturb input planning instances to maximize cost (often substantially so). We evaluate the performance of the algorithms against two dominant planning algorithms used in commercial applications (D* Lite and Fast Downward) and show both are vulnerable to extremely limited adversarial action. Here, experiments show that an adversary is able to increase plan costs in 66.9% of instances by only removing a single action from the actions space (D* Lite) and render 70% of instances from an international planning competition unsolvable by removing only three actions (Fast Forward). Finally, we show that finding an optimal perturbation in any search-based planning system is NP-hard.
Abstract:Geomagnetic storms, disturbances of Earth's magnetosphere caused by masses of charged particles being emitted from the Sun, are an uncontrollable threat to modern technology. Notably, they have the potential to damage satellites and cause instability in power grids on Earth, among other disasters. They result from high sun activity, which are induced from cool areas on the Sun known as sunspots. Forecasting the storms to prevent disasters requires an understanding of how and when they will occur. However, current prediction methods at the National Oceanic and Atmospheric Administration (NOAA) are limited in that they depend on expensive solar wind spacecraft and a global-scale magnetometer sensor network. In this paper, we introduce a novel machine learning and computer vision approach to accurately forecast geomagnetic storms without the need of such costly physical measurements. Our approach extracts features from images of the Sun to establish correlations between sunspots and geomagnetic storm classification and is competitive with NOAA's predictions. Indeed, our prediction achieves a 76% storm classification accuracy. This paper serves as an existence proof that machine learning and computer vision techniques provide an effective means for augmenting and improving existing geomagnetic storm forecasting methods.
Abstract:One of the principal uses of physical-space sensors in public safety applications is the detection of unsafe conditions (e.g., release of poisonous gases, weapons in airports, tainted food). However, current detection methods in these applications are often costly, slow to use, and can be inaccurate in complex, changing, or new environments. In this paper, we explore how machine learning methods used successfully in cyber domains, such as malware detection, can be leveraged to substantially enhance physical space detection. We focus on one important exemplar application--the detection and localization of radioactive materials. We show that the ML-based approaches can significantly exceed traditional table-based approaches in predicting angular direction. Moreover, the developed models can be expanded to include approximations of the distance to radioactive material (a critical dimension that reference tables used in practice do not capture). With four and eight detector arrays, we collect counts of gamma-rays as features for a suite of machine learning models to localize radioactive material. We explore seven unique scenarios via simulation frameworks frequently used for radiation detection and with physical experiments using radioactive material in laboratory environments. We observe that our approach can outperform the standard table-based method, reducing the angular error by 37% and reliably predicting distance within 2.4%. In this way, we show that advances in cyber-detection provide substantial opportunities for enhancing detection in public safety applications and beyond.
Abstract:Machine Learning is becoming a pivotal aspect of many systems today, offering newfound performance on classification and prediction tasks, but this rapid integration also comes with new unforeseen vulnerabilities. To harden these systems the ever-growing field of Adversarial Machine Learning has proposed new attack and defense mechanisms. However, a great asymmetry exists as these defensive methods can only provide security to certain models and lack scalability, computational efficiency, and practicality due to overly restrictive constraints. Moreover, newly introduced attacks can easily bypass defensive strategies by making subtle alterations. In this paper, we study an alternate approach inspired by honeypots to detect adversaries. Our approach yields learned models with an embedded watermark. When an adversary initiates an interaction with our model, attacks are encouraged to add this predetermined watermark stimulating detection of adversarial examples. We show that HoneyModels can reveal 69.5% of adversaries attempting to attack a Neural Network while preserving the original functionality of the model. HoneyModels offer an alternate direction to secure Machine Learning that slightly affects the accuracy while encouraging the creation of watermarked adversarial samples detectable by the HoneyModel but indistinguishable from others for the adversary.
Abstract:Machine learning is vulnerable to adversarial examples-inputs designed to cause models to perform poorly. However, it is unclear if adversarial examples represent realistic inputs in the modeled domains. Diverse domains such as networks and phishing have domain constraints-complex relationships between features that an adversary must satisfy for an attack to be realized (in addition to any adversary-specific goals). In this paper, we explore how domain constraints limit adversarial capabilities and how adversaries can adapt their strategies to create realistic (constraint-compliant) examples. In this, we develop techniques to learn domain constraints from data, and show how the learned constraints can be integrated into the adversarial crafting process. We evaluate the efficacy of our approach in network intrusion and phishing datasets and find: (1) up to 82% of adversarial examples produced by state-of-the-art crafting algorithms violate domain constraints, (2) domain constraints are robust to adversarial examples; enforcing constraints yields an increase in model accuracy by up to 34%. We observe not only that adversaries must alter inputs to satisfy domain constraints, but that these constraints make the generation of valid adversarial examples far more challenging.
Abstract:Machine learning algorithms have been shown to be vulnerable to adversarial manipulation through systematic modification of inputs (e.g., adversarial examples) in domains such as image recognition. Under the default threat model, the adversary exploits the unconstrained nature of images; each feature (pixel) is fully under control of the adversary. However, it is not clear how these attacks translate to constrained domains that limit which and how features can be modified by the adversary (e.g., network intrusion detection). In this paper, we explore whether constrained domains are less vulnerable than unconstrained domains to adversarial example generation algorithms. We create an algorithm for generating adversarial sketches: targeted universal perturbation vectors which encode feature saliency within the envelope of domain constraints. To assess how these algorithms perform, we evaluate them in constrained (e.g., network intrusion detection) and unconstrained (e.g., image recognition) domains. The results demonstrate that our approaches generate misclassification rates in constrained domains that were comparable to those of unconstrained domains (greater than 95%). Our investigation shows that the narrow attack surface exposed by constrained domains is still sufficiently large to craft successful adversarial examples; and thus, constraints do not appear to make a domain robust. Indeed, with as little as five randomly selected features, one can still generate adversarial examples.
Abstract:CleverHans is a software library that provides standardized reference implementations of adversarial example construction techniques and adversarial training. The library may be used to develop more robust machine learning models and to provide standardized benchmarks of models' performance in the adversarial setting. Benchmarks constructed without a standardized implementation of adversarial example construction are not comparable to each other, because a good result may indicate a robust model or it may merely indicate a weak implementation of the adversarial example construction procedure. This technical report is structured as follows. Section 1 provides an overview of adversarial examples in machine learning and of the CleverHans software. Section 2 presents the core functionalities of the library: namely the attacks based on adversarial examples and defenses to improve the robustness of machine learning models to these attacks. Section 3 describes how to report benchmark results using the library. Section 4 describes the versioning system.
Abstract:For well over a quarter century, detection systems have been driven by models learned from input features collected from real or simulated environments. An artifact (e.g., network event, potential malware sample, suspicious email) is deemed malicious or non-malicious based on its similarity to the learned model at runtime. However, the training of the models has been historically limited to only those features available at runtime. In this paper, we consider an alternate learning approach that trains models using "privileged" information--features available at training time but not at runtime--to improve the accuracy and resilience of detection systems. In particular, we adapt and extend recent advances in knowledge transfer, model influence, and distillation to enable the use of forensic or other data unavailable at runtime in a range of security domains. An empirical evaluation shows that privileged information increases precision and recall over a system with no privileged information: we observe up to 7.7% relative decrease in detection error for fast-flux bot detection, 8.6% for malware traffic detection, 7.3% for malware classification, and 16.9% for face recognition. We explore the limitations and applications of different privileged information techniques in detection systems. Such techniques provide a new means for detection systems to learn from data that would otherwise not be available at runtime.