Abstract:Large language models (LLMs) have gained human trust due to their capabilities and helpfulness. However, this in turn may allow LLMs to affect users' mindsets by manipulating language. It is termed as gaslighting, a psychological effect. In this work, we aim to investigate the vulnerability of LLMs under prompt-based and fine-tuning-based gaslighting attacks. Therefore, we propose a two-stage framework DeepCoG designed to: 1) elicit gaslighting plans from LLMs with the proposed DeepGaslighting prompting template, and 2) acquire gaslighting conversations from LLMs through our Chain-of-Gaslighting method. The gaslighting conversation dataset along with a corresponding safe dataset is applied to fine-tuning-based attacks on open-source LLMs and anti-gaslighting safety alignment on these LLMs. Experiments demonstrate that both prompt-based and fine-tuning-based attacks transform three open-source LLMs into gaslighters. In contrast, we advanced three safety alignment strategies to strengthen (by 12.05%) the safety guardrail of LLMs. Our safety alignment strategies have minimal impacts on the utility of LLMs. Empirical studies indicate that an LLM may be a potential gaslighter, even if it passed the harmfulness test on general dangerous queries.
Abstract:For language model classification, would you prefer having only one workable class or having every class working? The latter makes more practical uses. Especially for large language models (LLMs), the fact that they achieve a fair overall accuracy by in-context learning (ICL) obscures a large difference in individual class accuracies. In this work, we uncover and tackle language models' imbalance in per-class prediction accuracy by reconceptualizing it as the Contextual Oddity Bias (COBias), and we are the first to engage nonlinear integer programming (NIP) to debias it. Briefly, COBias refers to the difference in accuracy by a class A compared to its ''odd'' class, which holds the majority wrong predictions of class A. With the COBias metric, we reveal that LLMs of varied scales and families exhibit large per-class accuracy differences. Then we propose Debiasing as Nonlinear Integer Programming (DNIP) to correct ICL per-class probabilities for lower bias and higher overall accuracy. Our optimization objective is directly based on the evaluation scores by COBias and accuracy metrics, solved by simulated annealing. Evaluations on three LLMs across seven NLP classification tasks show that DNIP simultaneously achieves significant COBias reduction ($-27\%$) and accuracy improvement ($+12\%$) over the conventional ICL approach, suggesting that modeling pairwise class accuracy differences is a direction in pushing forward more accurate, more reliable LLM predictions.
Abstract:In this paper, we propose a system combination method for grammatical error correction (GEC), based on nonlinear integer programming (IP). Our method optimizes a novel F score objective based on error types, and combines multiple end-to-end GEC systems. The proposed IP approach optimizes the selection of a single best system for each grammatical error type present in the data. Experiments of the IP approach on combining state-of-the-art standalone GEC systems show that the combined system outperforms all standalone systems. It improves F0.5 score by 3.61% when combining the two best participating systems in the BEA 2019 shared task, and achieves F0.5 score of 73.08%. We also perform experiments to compare our IP approach with another state-of-the-art system combination method for GEC, demonstrating IP's competitive combination capability.
Abstract:Social robots deployed in public spaces present a challenging task for ASR because of a variety of factors, including noise SNR of 20 to 5 dB. Existing ASR models perform well for higher SNRs in this range, but degrade considerably with more noise. This work explores methods for providing improved ASR performance in such conditions. We use the AiShell-1 Chinese speech corpus and the Kaldi ASR toolkit for evaluations. We were able to exceed state-of-the-art ASR performance with SNR lower than 20 dB, demonstrating the feasibility of achieving relatively high performing ASR with open-source toolkits and hundreds of hours of training data, which is commonly available.
Abstract:In this paper we determine how multi-layer ensembling improves performance on multilingual intent classification. We develop a novel multi-layer ensembling approach that ensembles both different model initializations and different model architectures. We also introduce a new banking domain dataset and compare results against the standard ATIS dataset and the Chinese SMP2017 dataset to determine ensembling performance in multilingual and multi-domain contexts. We run ensemble experiments across all three datasets, and conclude that ensembling provides significant performance increases, and that multi-layer ensembling is a no-risk way to improve performance on intent classification. We also find that a diverse ensemble of simple models can reach perform comparable to much more sophisticated state-of-the-art models. Our best F 1 scores on ATIS, Banking, and SMP are 97.54%, 91.79%, and 93.55% respectively, which compare well with the state-of-the-art on ATIS and best submission to the SMP2017 competition. The total ensembling performance increases we achieve are 0.23%, 1.96%, and 4.04% F 1 respectively.
Abstract:Slot filling is an important problem in Spoken Language Understanding (SLU) and Natural Language Processing (NLP), which involves identifying a user's intent and assigning a semantic concept to each word in a sentence. This paper presents a word feature vector method and combines it into the convolutional neural network (CNN). We consider 18 word features and each word feature is constructed by merging similar word labels. By introducing the concept of external library, we propose a feature set approach that is beneficial for building the relationship between a word from the training dataset and the feature. Computational results are reported using the ATIS dataset and comparisons with traditional CNN as well as bi-directional sequential CNN are also presented.
Abstract:Intent classification has been widely researched on English data with deep learning approaches that are based on neural networks and word embeddings. The challenge for Chinese intent classification stems from the fact that, unlike English where most words are made up of 26 phonologic alphabet letters, Chinese is logographic, where a Chinese character is a more basic semantic unit that can be informative and its meaning does not vary too much in contexts. Chinese word embeddings alone can be inadequate for representing words, and pre-trained embeddings can suffer from not aligning well with the task at hand. To account for the inadequacy and leverage Chinese character information, we propose a low-effort and generic way to dynamically integrate character embedding based feature maps with word embedding based inputs, whose resulting word-character embeddings are stacked with a contextual information extraction module to further incorporate context information for predictions. On top of the proposed model, we employ an ensemble method to combine single models and obtain the final result. The approach is data-independent without relying on external sources like pre-trained word embeddings. The proposed model outperforms baseline models and existing methods.
Abstract:Sentiment analysis of reviews is a popular task in natural language processing. In this work, the goal is to predict the score of food reviews on a scale of 1 to 5 with two recurrent neural networks that are carefully tuned. As for baseline, we train a simple RNN for classification. Then we extend the baseline to GRU. In addition, we present two different methods to deal with highly skewed data, which is a common problem for reviews. Models are evaluated using accuracies.
Abstract:Since the late 1990s when speech companies began providing their customer-service software in the market, people have gotten used to speaking to machines. As people interact more often with voice and gesture controlled machines, they expect the machines to recognize different emotions, and understand other high level communication features such as humor, sarcasm and intention. In order to make such communication possible, the machines need an empathy module in them which can extract emotions from human speech and behavior and can decide the correct response of the robot. Although research on empathetic robots is still in the early stage, we described our approach using signal processing techniques, sentiment analysis and machine learning algorithms to make robots that can "understand" human emotion. We propose Zara the Supergirl as a prototype system of empathetic robots. It is a software based virtual android, with an animated cartoon character to present itself on the screen. She will get "smarter" and more empathetic through its deep learning algorithms, and by gathering more data and learning from it. In this paper, we present our work so far in the areas of deep learning of emotion and sentiment recognition, as well as humor recognition. We hope to explore the future direction of android development and how it can help improve people's lives.