Abstract:Multilingual retrieval-augmented generation (MRAG) requires models to effectively acquire and integrate beneficial external knowledge from multilingual collections. However, most existing studies employ a unitive process where queries of equivalent semantics across different languages are processed through a single-turn retrieval and subsequent optimization. Such a ``one-size-fits-all'' strategy is often suboptimal in multilingual settings, as the models occur to knowledge bias and conflict during the interaction with the search engine. To alleviate the issues, we propose LcRL, a multilingual search-augmented reinforcement learning framework that integrates a language-coupled Group Relative Policy Optimization into the policy and reward models. We adopt the language-coupled group sampling in the rollout module to reduce knowledge bias, and regularize an auxiliary anti-consistency penalty in the reward models to mitigate the knowledge conflict. Experimental results demonstrate that LcRL not only achieves competitive performance but is also appropriate for various practical scenarios such as constrained training data and retrieval over collections encompassing a large number of languages. Our code is available at https://github.com/Cherry-qwq/LcRL-Open.
Abstract:Large language models (LLMs) and multimodal large language models (MLLMs) have shown excellent general capabilities, even exhibiting adaptability in many professional domains such as law, economics, transportation, and medicine. Currently, many domain-specific benchmarks have been proposed to verify the performance of (M)LLMs in specific fields. Among various domains, transportation plays a crucial role in modern society as it impacts the economy, the environment, and the quality of life for billions of people. However, it is unclear how much traffic knowledge (M)LLMs possess and whether they can reliably perform transportation-related tasks. To address this gap, we propose TransportationGames, a carefully designed and thorough evaluation benchmark for assessing (M)LLMs in the transportation domain. By comprehensively considering the applications in real-world scenarios and referring to the first three levels in Bloom's Taxonomy, we test the performance of various (M)LLMs in memorizing, understanding, and applying transportation knowledge by the selected tasks. The experimental results show that although some models perform well in some tasks, there is still much room for improvement overall. We hope the release of TransportationGames can serve as a foundation for future research, thereby accelerating the implementation and application of (M)LLMs in the transportation domain.