Abstract:Although video perception models have made remarkable advancements in recent years, they still heavily rely on explicit text descriptions or pre-defined categories to identify target instances before executing video perception tasks. These models, however, fail to proactively comprehend and reason the user's intentions via textual input. Even though previous works attempt to investigate solutions to incorporate reasoning with image segmentation, they fail to reason with videos due to the video's complexity in object motion. To bridge the gap between image and video, in this work, we propose a new video segmentation task - video reasoning segmentation. The task is designed to output tracklets of segmentation masks given a complex input text query. What's more, to promote research in this unexplored area, we construct a reasoning video segmentation benchmark. Finally, we present ViLLa: Video reasoning segmentation with a Large Language Model, which incorporates the language generation capabilities of multimodal Large Language Models (LLMs) while retaining the capabilities of detecting, segmenting, and tracking multiple instances. We use a temporal-aware context aggregation module to incorporate contextual visual cues to text embeddings and propose a video-frame decoder to build temporal correlations across segmentation tokens. Remarkably, our ViLLa demonstrates capability in handling complex reasoning and referring video segmentation. Also, our model shows impressive ability in different temporal understanding benchmarks. Both quantitative and qualitative experiments show our method effectively unlocks new video reasoning segmentation capabilities for multimodal LLMs. The code and dataset will be available at https://github.com/rkzheng99/ViLLa.
Abstract:We introduce InternVideo2, a new video foundation model (ViFM) that achieves the state-of-the-art performance in action recognition, video-text tasks, and video-centric dialogue. Our approach employs a progressive training paradigm that unifies the different self- or weakly-supervised learning frameworks of masked video token reconstruction, cross-modal contrastive learning, and next token prediction. Different training stages would guide our model to capture different levels of structure and semantic information through different pretext tasks. At the data level, we prioritize the spatiotemporal consistency by semantically segmenting videos and generating video-audio-speech captions. This improves the alignment between video and text. We scale both data and model size for our InternVideo2. Through extensive experiments, we validate our designs and demonstrate the state-of-the-art performance on over 60 video and audio tasks. Notably, our model outperforms others on various video-related captioning, dialogue, and long video understanding benchmarks, highlighting its ability to reason and comprehend long temporal contexts. Code and models are available at https://github.com/OpenGVLab/InternVideo2/.
Abstract:Training on large-scale datasets can boost the performance of video instance segmentation while the annotated datasets for VIS are hard to scale up due to the high labor cost. What we possess are numerous isolated filed-specific datasets, thus, it is appealing to jointly train models across the aggregation of datasets to enhance data volume and diversity. However, due to the heterogeneity in category space, as mask precision increases with the data volume, simply utilizing multiple datasets will dilute the attention of models on different taxonomies. Thus, increasing the data scale and enriching taxonomy space while improving classification precision is important. In this work, we analyze that providing extra taxonomy information can help models concentrate on specific taxonomy, and propose our model named Taxonomy-aware Multi-dataset Joint Training for Video Instance Segmentation (TMT-VIS) to address this vital challenge. Specifically, we design a two-stage taxonomy aggregation module that first compiles taxonomy information from input videos and then aggregates these taxonomy priors into instance queries before the transformer decoder. We conduct extensive experimental evaluations on four popular and challenging benchmarks, including YouTube-VIS 2019, YouTube-VIS 2021, OVIS, and UVO. Our model shows significant improvement over the baseline solutions, and sets new state-of-the-art records on all benchmarks. These appealing and encouraging results demonstrate the effectiveness and generality of our approach. The code is available at https://github.com/rkzheng99/TMT-VIS(https://github.com/rkzheng99/TMT-VIS)