Abstract:In continual learning, knowledge must be preserved and re-used between tasks, maintaining good transfer to future tasks and minimizing forgetting of previously learned ones. While several practical algorithms have been devised for this setting, there have been few theoretical works aiming to quantify and bound the degree of Forgetting in general settings. We provide both data-dependent and oracle upper bounds that apply regardless of model and algorithm choice, as well as bounds for Gibbs posteriors. We derive an algorithm inspired by our bounds and demonstrate empirically that our approach yields improved forward and backward transfer.
Abstract:Given a time-series of noisy measured outputs of a dynamical system z[k], k=1...N, the Identifying Regulation with Adversarial Surrogates (IRAS) algorithm aims to find a non-trivial first integral of the system, namely, a scalar function g() such that g(z[i]) = g(z[j]), for all i,j. IRAS has been suggested recently and was used successfully in several learning tasks in models from biology and physics. Here, we give the first rigorous analysis of this algorithm in a specific setting. We assume that the observations admit a linear first integral and that they are contaminated by Gaussian noise. We show that in this case the IRAS iterations are closely related to the self-consistent-field (SCF) iterations for solving a generalized Rayleigh quotient minimization problem. Using this approach, we derive several sufficient conditions guaranteeing local convergence of IRAS to the correct first integral.
Abstract:Artificial agents that learn to communicate in order to accomplish a given task acquire communication protocols that are typically opaque to a human. A large body of work has attempted to evaluate the emergent communication via various evaluation measures, with \emph{compositionality} featuring as a prominent desired trait. However, current evaluation procedures do not directly expose the compositionality of the emergent communication. We propose a procedure to assess the compositionality of emergent communication by finding the best-match between emerged words and natural language concepts. The best-match algorithm provides both a global score and a translation-map from emergent words to natural language concepts. To the best of our knowledge, it is the first time that such direct and interpretable mapping between emergent words and human concepts is provided.
Abstract:We consider a statistical version of curriculum learning (CL) in a parametric prediction setting. The learner is required to estimate a target parameter vector, and can adaptively collect samples from either the target model, or other source models that are similar to the target model, but less noisy. We consider three types of learners, depending on the level of side-information they receive. The first two, referred to as strong/weak-oracle learners, receive high/low degrees of information about the models, and use these to learn. The third, a fully adaptive learner, estimates the target parameter vector without any prior information. In the single source case, we propose an elimination learning method, whose risk matches that of a strong-oracle learner. In the multiple source case, we advocate that the risk of the weak-oracle learner is a realistic benchmark for the risk of adaptive learners. We develop an adaptive multiple elimination-rounds CL algorithm, and characterize instance-dependent conditions for its risk to match that of the weak-oracle learner. We consider instance-dependent minimax lower bounds, and discuss the challenges associated with defining the class of instances for the bound. We derive two minimax lower bounds, and determine the conditions under which the performance weak-oracle learner is minimax optimal.
Abstract:Whenever inspected by humans, reconstructed signals should not be distinguished from real ones. Typically, such a high perceptual quality comes at the price of high reconstruction error, and vice versa. We study this distortion-perception (DP) tradeoff over finite-alphabet channels, for the Wasserstein-$1$ distance induced by a general metric as the perception index, and an arbitrary distortion matrix. Under this setting, we show that computing the DP function and the optimal reconstructions is equivalent to solving a set of linear programming problems. We provide a structural characterization of the DP tradeoff, where the DP function is piecewise linear in the perception index. We further derive a closed-form expression for the case of binary sources.
Abstract:We study online meta-learning with bandit feedback, with the goal of improving performance across multiple tasks if they are similar according to some natural similarity measure. As the first to target the adversarial online-within-online partial-information setting, we design meta-algorithms that combine outer learners to simultaneously tune the initialization and other hyperparameters of an inner learner for two important cases: multi-armed bandits (MAB) and bandit linear optimization (BLO). For MAB, the meta-learners initialize and set hyperparameters of the Tsallis-entropy generalization of Exp3, with the task-averaged regret improving if the entropy of the optima-in-hindsight is small. For BLO, we learn to initialize and tune online mirror descent (OMD) with self-concordant barrier regularizers, showing that task-averaged regret varies directly with an action space-dependent measure they induce. Our guarantees rely on proving that unregularized follow-the-leader combined with two levels of low-dimensional hyperparameter tuning is enough to learn a sequence of affine functions of non-Lipschitz and sometimes non-convex Bregman divergences bounding the regret of OMD.
Abstract:Many practical settings call for the reconstruction of temporal signals from corrupted or missing data. Classic examples include decoding, tracking, signal enhancement and denoising. Since the reconstructed signals are ultimately viewed by humans, it is desirable to achieve reconstructions that are pleasing to human perception. Mathematically, perfect perceptual-quality is achieved when the distribution of restored signals is the same as that of natural signals, a requirement which has been heavily researched in static estimation settings (i.e. when a whole signal is processed at once). Here, we study the problem of optimal causal filtering under a perfect perceptual-quality constraint, which is a task of fundamentally different nature. Specifically, we analyze a Gaussian Markov signal observed through a linear noisy transformation. In the absence of perceptual constraints, the Kalman filter is known to be optimal in the MSE sense for this setting. Here, we show that adding the perfect perceptual quality constraint (i.e. the requirement of temporal consistency), introduces a fundamental dilemma whereby the filter may have to "knowingly" ignore new information revealed by the observations in order to conform to its past decisions. This often comes at the cost of a significant increase in the MSE (beyond that encountered in static settings). Our analysis goes beyond the classic innovation process of the Kalman filter, and introduces the novel concept of an unutilized information process. Using this tool, we present a recursive formula for perceptual filters, and demonstrate the qualitative effects of perfect perceptual-quality estimation on a video reconstruction problem.
Abstract:The field of emergent communication aims to understand the characteristics of communication as it emerges from artificial agents solving tasks that require information exchange. Communication with discrete messages is considered a desired characteristic, for both scientific and applied reasons. However, training a multi-agent system with discrete communication is not straightforward, requiring either reinforcement learning algorithms or relaxing the discreteness requirement via a continuous approximation such as the Gumbel-softmax. Both these solutions result in poor performance compared to fully continuous communication. In this work, we propose an alternative approach to achieve discrete communication -- quantization of communicated messages. Using message quantization allows us to train the model end-to-end, achieving superior performance in multiple setups. Moreover, quantization is a natural framework that runs the gamut from continuous to discrete communication. Thus, it sets the ground for a broader view of multi-agent communication in the deep learning era.
Abstract:We present a PAC-Bayes-style generalization bound which enables the replacement of the KL-divergence with a variety of Integral Probability Metrics (IPM). We provide instances of this bound with the IPM being the total variation metric and the Wasserstein distance. A notable feature of the obtained bounds is that they naturally interpolate between classical uniform convergence bounds in the worst case (when the prior and posterior are far away from each other), and preferable bounds in better cases (when the posterior and prior are close). This illustrates the possibility of reinforcing classical generalization bounds with algorithm- and data-dependent components, thus making them more suitable to analyze algorithms that use a large hypothesis space.
Abstract:We study meta-learning for adversarial multi-armed bandits. We consider the online-within-online setup, in which a player (learner) encounters a sequence of multi-armed bandit episodes. The player's performance is measured as regret against the best arm in each episode, according to the losses generated by an adversary. The difficulty of the problem depends on the empirical distribution of the per-episode best arm chosen by the adversary. We present an algorithm that can leverage the non-uniformity in this empirical distribution, and derive problem-dependent regret bounds. This solution comprises an inner learner that plays each episode separately, and an outer learner that updates the hyper-parameters of the inner algorithm between the episodes. In the case where the best arm distribution is far from uniform, it improves upon the best bound that can be achieved by any online algorithm executed on each episode individually without meta-learning.