Abstract:In continual learning, knowledge must be preserved and re-used between tasks, maintaining good transfer to future tasks and minimizing forgetting of previously learned ones. While several practical algorithms have been devised for this setting, there have been few theoretical works aiming to quantify and bound the degree of Forgetting in general settings. We provide both data-dependent and oracle upper bounds that apply regardless of model and algorithm choice, as well as bounds for Gibbs posteriors. We derive an algorithm inspired by our bounds and demonstrate empirically that our approach yields improved forward and backward transfer.
Abstract:When humans perform inductive learning, they often enhance the process with background knowledge. With the increasing availability of well-formed collaborative knowledge bases, the performance of learning algorithms could be significantly enhanced if a way were found to exploit these knowledge bases. In this work, we present a novel algorithm for injecting external knowledge into induction algorithms using feature generation. Given a feature, the algorithm defines a new learning task over its set of values, and uses the knowledge base to solve the constructed learning task. The resulting classifier is then used as a new feature for the original problem. We have applied our algorithm to the domain of text classification using large semantic knowledge bases. We have shown that the generated features significantly improve the performance of existing learning algorithms.