Abstract:Device-to-device (D2D)-assisted mobile edge computing (MEC) is one of the critical technologies of future sixth generation (6G) networks. The core of D2D-assisted MEC is to reduce system latency for network edge UEs by supporting cloud computing services, thereby achieving high-speed transmission. Due to the sensitivity of communication signals to obstacles, relaying is adopted to enhance the D2D-assisted MEC system's performance and its coverage area. However, relay nodes and the base station (BS) are typically equipped with large-scale antenna arrays. This increases the cost of relay-assisted D2D MEC systems and limits their deployment. Movable antenna (MA) technology is used to work around this limitation without compromising performance. Specifically, the core of MA technology lies in optimizing the antenna positions to increase system capacity. Therefore, this paper proposes a novel resource allocation scheme for MA-enhanced relay-assisted D2D MEC systems. Specifically, the MA positions and beamforming of user equipments (UEs), relay, and BS as well as the allocation of resources and the computation task offloading rate at the MEC server, all are optimized herein with the objective of minimizing the maximum latency while satisfying computation and communication rate constraints. Since this is a multivariable non-convex problem, a parallel and distributed penalty dual decomposition (PDD) based algorithm is developed and combined with successive convex approximation (SCA) to solve this non-convex problem. The results of extensive numerical analyses show that the proposed algorithm significantly improves the performance of the MA-enhanced relay-assisted D2D communication system compared to a counterpart where relays and the BS are equiped with traditional fixed-position antenna (FPA).
Abstract:Deep Metric Learning (DML) serves to learn an embedding function to project semantically similar data into nearby embedding space and plays a vital role in many applications, such as image retrieval and face recognition. However, the performance of DML methods often highly depends on sampling methods to choose effective data from the embedding space in the training. In practice, the embeddings in the embedding space are obtained by some deep models, where the embedding space is often with barren area due to the absence of training points, resulting in so called "missing embedding" issue. This issue may impair the sample quality, which leads to degenerated DML performance. In this work, we investigate how to alleviate the "missing embedding" issue to improve the sampling quality and achieve effective DML. To this end, we propose a Densely-Anchored Sampling (DAS) scheme that considers the embedding with corresponding data point as "anchor" and exploits the anchor's nearby embedding space to densely produce embeddings without data points. Specifically, we propose to exploit the embedding space around single anchor with Discriminative Feature Scaling (DFS) and multiple anchors with Memorized Transformation Shifting (MTS). In this way, by combing the embeddings with and without data points, we are able to provide more embeddings to facilitate the sampling process thus boosting the performance of DML. Our method is effortlessly integrated into existing DML frameworks and improves them without bells and whistles. Extensive experiments on three benchmark datasets demonstrate the superiority of our method.
Abstract:The quality of images captured in outdoor environments can be affected by poor weather conditions such as fog, dust, and atmospheric scattering of other particles. This problem can bring extra challenges to high-level computer vision tasks like image segmentation and object detection. However, previous studies on image dehazing suffer from a huge computational workload and corruption of the original image, such as over-saturation and halos. In this paper, we present a novel image dehazing approach based on the optical model for haze images and regularized optimization. Specifically, we convert the non-convex, bilinear problem concerning the unknown haze-free image and light transmission distribution to a convex, linear optimization problem by estimating the atmosphere light constant. Our method is further accelerated by introducing a multilevel Haar wavelet transform. The optimization, instead, is applied to the low frequency sub-band decomposition of the original image. This dimension reduction significantly improves the processing speed of our method and exhibits the potential for real-time applications. Experimental results show that our approach outperforms state-of-the-art dehazing algorithms in terms of both image reconstruction quality and computational efficiency. For implementation details, source code can be publicly accessed via http://github.com/JiaxiHe/Image-and-Video-Dehazing.