Abstract:Device-to-device (D2D)-assisted mobile edge computing (MEC) is one of the critical technologies of future sixth generation (6G) networks. The core of D2D-assisted MEC is to reduce system latency for network edge UEs by supporting cloud computing services, thereby achieving high-speed transmission. Due to the sensitivity of communication signals to obstacles, relaying is adopted to enhance the D2D-assisted MEC system's performance and its coverage area. However, relay nodes and the base station (BS) are typically equipped with large-scale antenna arrays. This increases the cost of relay-assisted D2D MEC systems and limits their deployment. Movable antenna (MA) technology is used to work around this limitation without compromising performance. Specifically, the core of MA technology lies in optimizing the antenna positions to increase system capacity. Therefore, this paper proposes a novel resource allocation scheme for MA-enhanced relay-assisted D2D MEC systems. Specifically, the MA positions and beamforming of user equipments (UEs), relay, and BS as well as the allocation of resources and the computation task offloading rate at the MEC server, all are optimized herein with the objective of minimizing the maximum latency while satisfying computation and communication rate constraints. Since this is a multivariable non-convex problem, a parallel and distributed penalty dual decomposition (PDD) based algorithm is developed and combined with successive convex approximation (SCA) to solve this non-convex problem. The results of extensive numerical analyses show that the proposed algorithm significantly improves the performance of the MA-enhanced relay-assisted D2D communication system compared to a counterpart where relays and the BS are equiped with traditional fixed-position antenna (FPA).
Abstract:This work presents an investigation and assessment framework, which, supported by realistic data, aims at provisioning operators with in-depth insights into the consumer-perceived Quality-of-Experience (QoE) at public Electric Vehicle (EV) charging infrastructures. Motivated by the unprecedented EV market growth, it is suspected that the existing charging infrastructure will soon be no longer capable of sustaining the rapidly growing charging demands; let alone that the currently adopted ad hoc infrastructure expansion strategies seem to be far from contributing any quality service sustainability solutions that tangibly reduce (ultimately mitigate) the severity of this problem. Without suitable QoE metrics, operators, today, face remarkable difficulty in assessing the performance of EV Charging Stations (EVCSs) in this regard. This paper aims at filling this gap through the formulation of novel and original critical QoE performance metrics that provide operators with visibility into the per-EVCS operational dynamics and allow for the optimization of these stations' respective utilization. Such metrics shall then be used as inputs to a Machine Learning model finely tailored and trained using recent real-world data sets for the purpose of forecasting future long-term EVCS loads. This will, in turn, allow for making informed optimal EV charging infrastructure expansions that will be capable of reliably coping with the rising EV charging demands and maintaining acceptable QoE levels. The model's accuracy has been tested and extensive simulations are conducted to evaluate the achieved performance in terms of the above listed metrics and show the suitability of the recommended infrastructure expansions.