Abstract:This work presents an investigation and assessment framework, which, supported by realistic data, aims at provisioning operators with in-depth insights into the consumer-perceived Quality-of-Experience (QoE) at public Electric Vehicle (EV) charging infrastructures. Motivated by the unprecedented EV market growth, it is suspected that the existing charging infrastructure will soon be no longer capable of sustaining the rapidly growing charging demands; let alone that the currently adopted ad hoc infrastructure expansion strategies seem to be far from contributing any quality service sustainability solutions that tangibly reduce (ultimately mitigate) the severity of this problem. Without suitable QoE metrics, operators, today, face remarkable difficulty in assessing the performance of EV Charging Stations (EVCSs) in this regard. This paper aims at filling this gap through the formulation of novel and original critical QoE performance metrics that provide operators with visibility into the per-EVCS operational dynamics and allow for the optimization of these stations' respective utilization. Such metrics shall then be used as inputs to a Machine Learning model finely tailored and trained using recent real-world data sets for the purpose of forecasting future long-term EVCS loads. This will, in turn, allow for making informed optimal EV charging infrastructure expansions that will be capable of reliably coping with the rising EV charging demands and maintaining acceptable QoE levels. The model's accuracy has been tested and extensive simulations are conducted to evaluate the achieved performance in terms of the above listed metrics and show the suitability of the recommended infrastructure expansions.
Abstract:In this paper, we investigate an edge-based approach for the detection and localization of coordinated oscillatory load attacks initiated by exploited EV charging stations against the power grid. We rely on the behavioral characteristics of the power grid in the presence of interconnected EVCS while combining cyber and physical layer features to implement deep learning algorithms for the effective detection of oscillatory load attacks at the EVCS. We evaluate the proposed detection approach by building a real-time test bed to synthesize benign and malicious data, which was generated by analyzing real-life EV charging data collected during recent years. The results demonstrate the effectiveness of the implemented approach with the Convolutional Long-Short Term Memory model producing optimal classification accuracy (99.4\%). Moreover, our analysis results shed light on the impact of such detection mechanisms towards building resiliency into different levels of the EV charging ecosystem while allowing power grid operators to localize attacks and take further mitigation measures. Specifically, we managed to decentralize the detection mechanism of oscillatory load attacks and create an effective alternative for operator-centric mechanisms to mitigate multi-operator and MitM oscillatory load attacks against the power grid. Finally, we leverage the created test bed to evaluate a distributed mitigation technique, which can be deployed on public/private charging stations to average out the impact of oscillatory load attacks while allowing the power system to recover smoothly within 1 second with minimal overhead.