Abstract:The wiretap channel is a well-studied problem in the physical layer security (PLS) literature. Although it is proven that the decoding error probability and information leakage can be made arbitrarily small in the asymptotic regime, further research on finite-blocklength codes is required on the path towards practical, secure communications systems. This work provides the first experimental characterization of a deep learning-based, finite-blocklength code construction for multi-tap fading wiretap channels without channel state information (CSI). In addition to the evaluation of the average probability of error and information leakage, we illustrate the influence of (i) the number of fading taps, (ii) differing variances of the fading coefficients and (iii) the seed selection for the hash function-based security layer.
Abstract:Resilience and power consumption are two important performance metrics for many modern communication systems, and it is therefore important to define, analyze, and optimize them. In this work, we consider a wireless communication system with secret-key generation, in which the secret-key bits are added to and used from a pool of available key bits. We propose novel physical layer resilience metrics for the survivability of such systems. In addition, we propose multiple power allocation schemes and analyze their trade-off between resilience and power consumption. In particular, we investigate and compare constant power allocation, an adaptive analytical algorithm, and a reinforcement learning-based solution. It is shown how the transmit power can be minimized such that a specified resilience is guaranteed. These results can be used directly by designers of such systems to optimize the system parameters for the desired performance in terms of reliability, security, and resilience.
Abstract:In this paper, the feasibility of implementing a lightweight key distribution scheme using physical layer security for secret key generation (SKG) is explored. Specifically, we focus on examining SKG with the received signal strength (RSS) serving as the primary source of shared randomness. Our investigation centers on a frequency-selective line-of-sight (LoS) multipath channel, with a particular emphasis on assessing SKG rates derived from the distributions of RSS. We derive the received signal distributions based on how the multipath components resolve at the receiver. The mutual information (MI) is evaluated based on LoS 3GPP channel models using a numerical estimator. We study how the bandwidth, delay spread, and Rician K-factor impact the estimated MI. This MI then serves as a benchmark setting bounds for the SKG rates in our exploration.
Abstract:The training of neural encoders via deep learning necessitates a differentiable channel model due to the backpropagation algorithm. This requirement can be sidestepped by approximating either the channel distribution or its gradient through pilot signals in real-world scenarios. The initial approach draws upon the latest advancements in image generation, utilizing generative adversarial networks (GANs) or their enhanced variants to generate channel distributions. In this paper, we address this channel approximation challenge with diffusion models, which have demonstrated high sample quality in image generation. We offer an end-to-end channel coding framework underpinned by diffusion models and propose an efficient training algorithm. Our simulations with various channel models establish that our diffusion models learn the channel distribution accurately, thereby achieving near-optimal end-to-end symbol error rates (SERs). We also note a significant advantage of diffusion models: A robust generalization capability in high signal-to-noise ratio regions, in contrast to GAN variants that suffer from error floor. Furthermore, we examine the trade-off between sample quality and sampling speed, when an accelerated sampling algorithm is deployed, and investigate the effect of the noise scheduling on this trade-off. With an apt choice of noise scheduling, sampling time can be significantly reduced with a minor increase in SER.
Abstract:We study a new framework for designing differentially private (DP) mechanisms via randomized graph colorings, called rainbow differential privacy. In this framework, datasets are nodes in a graph, and two neighboring datasets are connected by an edge. Each dataset in the graph has a preferential ordering for the possible outputs of the mechanism, and these orderings are called rainbows. Different rainbows partition the graph of connected datasets into different regions. We show that if a DP mechanism at the boundary of such regions is fixed and it behaves identically for all same-rainbow boundary datasets, then a unique optimal $(\epsilon,\delta)$-DP mechanism exists (as long as the boundary condition is valid) and can be expressed in closed-form. Our proof technique is based on an interesting relationship between dominance ordering and DP, which applies to any finite number of colors and for $(\epsilon,\delta)$-DP, improving upon previous results that only apply to at most three colors and for $\epsilon$-DP. We justify the homogeneous boundary condition assumption by giving an example with non-homogeneous boundary condition, for which there exists no optimal DP mechanism.
Abstract:This work considers the problem of mitigating information leakage between communication and sensing in systems jointly performing both operations. Specifically, a discrete memoryless state-dependent broadcast channel model is studied in which (i) the presence of feedback enables a transmitter to convey information, while simultaneously performing channel state estimation; (ii) one of the receivers is treated as an eavesdropper whose state should be estimated but which should remain oblivious to part of the transmitted information. The model abstracts the challenges behind security for joint communication and sensing if one views the channel state as a key attribute, e.g., location. For independent and identically distributed states, perfect output feedback, and when part of the transmitted message should be kept secret, a partial characterization of the secrecy-distortion region is developed. The characterization is exact when the broadcast channel is either physically-degraded or reversely-physically-degraded. The partial characterization is also extended to the situation in which the entire transmitted message should be kept secret. The benefits of a joint approach compared to separation-based secure communication and state-sensing methods are illustrated with binary joint communication and sensing models.
Abstract:Small neural networks (NNs) used for error correction were shown to improve on classic channel codes and to address channel model changes. We extend the code dimension of any such structure by using the same NN under one-hot encoding multiple times, which are serially-concatenated with an outer classic code. We design NNs with the same network parameters, where each Reed-Solomon codeword symbol is an input to a different NN. Significant improvements in block error probabilities for an additive Gaussian noise channel as compared to the small neural code are illustrated, as well as robustness to channel model changes.
Abstract:The problem of secure source coding with multiple terminals is extended by considering a remote source whose noisy measurements are the correlated random variables used for secure source reconstruction. The main additions to the problem include 1) all terminals noncausally observe a noisy measurement of the remote source; 2) a private key is available to all legitimate terminals; 3) the public communication link between the encoder and decoder is rate-limited; 4) the secrecy leakage to the eavesdropper is measured with respect to the encoder input, whereas the privacy leakage is measured with respect to the remote source. Exact rate regions are characterized for a lossy source coding problem with a private key, remote source, and decoder side information under security, privacy, communication, and distortion constraints. By replacing the distortion constraint with a reliability constraint, we obtain the exact rate region also for the lossless case. Furthermore, the lossy rate region for scalar discrete-time Gaussian sources and measurement channels is established.
Abstract:This work considers mitigation of information leakage between communication and sensing operations in joint communication and sensing systems. Specifically, a discrete memoryless state-dependent broadcast channel model is studied in which (i) the presence of feedback enables a transmitter to simultaneously achieve reliable communication and channel state estimation; (ii) one of the receivers is treated as an eavesdropper whose state should be estimated but which should remain oblivious to a part of the transmitted information. The model abstracts the challenges behind security for joint communication and sensing if one views the channel state as a characteristic of the receiver, e.g., its location. For independent identically distributed (i.i.d.) states, perfect output feedback, and when part of the transmitted message should be kept secret, a partial characterization of the secrecy-distortion region is developed. The characterization is exact when the broadcast channel is either physically-degraded or reversely-physically-degraded. The characterization is also extended to the situation in which the entire transmitted message should be kept secret. The benefits of a joint approach compared to separation-based secure communication and state-sensing methods are illustrated with a binary joint communication and sensing model.
Abstract:We extend a previous framework for designing differentially private (DP) mechanisms via randomized graph colorings that was restricted to binary functions, corresponding to colorings in a graph, to multi-valued functions. As before, datasets are nodes in the graph and any two neighboring datasets are connected by an edge. In our setting, we assume each dataset has a preferential ordering for the possible outputs of the mechanism, which we refer to as a rainbow. Different rainbows partition the graph of datasets into different regions. We show that when the DP mechanism is pre-specified at the boundary of such regions, at most one optimal mechanism can exist. Moreover, if the mechanism is to behave identically for all same-rainbow boundary datasets, the problem can be greatly simplified and solved by means of a morphism to a line graph. We then show closed form expressions for the line graph in the case of ternary functions. Treatment of ternary queries in this paper displays enough richness to be extended to higher-dimensional query spaces with preferential query ordering, but the optimality proof does not seem to follow directly from the ternary proof.