Abstract:Nearest neighbor (NN) algorithms have been extensively used for missing data problems in recommender systems and sequential decision-making systems. Prior theoretical analysis has established favorable guarantees for NN when the underlying data is sufficiently smooth and the missingness probabilities are lower bounded. Here we analyze NN with non-smooth non-linear functions with vast amounts of missingness. In particular, we consider matrix completion settings where the entries of the underlying matrix follow a latent non-linear factor model, with the non-linearity belonging to a \Holder function class that is less smooth than Lipschitz. Our results establish following favorable properties for a suitable two-sided NN: (1) The mean squared error (MSE) of NN adapts to the smoothness of the non-linearity, (2) under certain regularity conditions, the NN error rate matches the rate obtained by an oracle equipped with the knowledge of both the row and column latent factors, and finally (3) NN's MSE is non-trivial for a wide range of settings even when several matrix entries might be missing deterministically. We support our theoretical findings via extensive numerical simulations and a case study with data from a mobile health study, HeartSteps.
Abstract:The kernel thinning algorithm of Dwivedi & Mackey (2024) provides a better-than-i.i.d. compression of a generic set of points. By generating high-fidelity coresets of size significantly smaller than the input points, KT is known to speed up unsupervised tasks like Monte Carlo integration, uncertainty quantification, and non-parametric hypothesis testing, with minimal loss in statistical accuracy. In this work, we generalize the KT algorithm to speed up supervised learning problems involving kernel methods. Specifically, we combine two classical algorithms--Nadaraya-Watson (NW) regression or kernel smoothing, and kernel ridge regression (KRR)--with KT to provide a quadratic speed-up in both training and inference times. We show how distribution compression with KT in each setting reduces to constructing an appropriate kernel, and introduce the Kernel-Thinned NW and Kernel-Thinned KRR estimators. We prove that KT-based regression estimators enjoy significantly superior computational efficiency over the full-data estimators and improved statistical efficiency over i.i.d. subsampling of the training data. En route, we also provide a novel multiplicative error guarantee for compressing with KT. We validate our design choices with both simulations and real data experiments.
Abstract:Consider a setting with multiple units (e.g., individuals, cohorts, geographic locations) and outcomes (e.g., treatments, times, items), where the goal is to learn a multivariate distribution for each unit-outcome entry, such as the distribution of a user's weekly spend and engagement under a specific mobile app version. A common challenge is the prevalence of missing not at random data, where observations are available only for certain unit-outcome combinations and the observation availability can be correlated with the properties of distributions themselves, i.e., there is unobserved confounding. An additional challenge is that for any observed unit-outcome entry, we only have a finite number of samples from the underlying distribution. We tackle these two challenges by casting the problem into a novel distributional matrix completion framework and introduce a kernel based distributional generalization of nearest neighbors to estimate the underlying distributions. By leveraging maximum mean discrepancies and a suitable factor model on the kernel mean embeddings of the underlying distributions, we establish consistent recovery of the underlying distributions even when data is missing not at random and positivity constraints are violated. Furthermore, we demonstrate that our nearest neighbors approach is robust to heteroscedastic noise, provided we have access to two or more measurements for the observed unit-outcome entries, a robustness not present in prior works on nearest neighbors with single measurements.
Abstract:We introduce the problem of distributional matrix completion: Given a sparsely observed matrix of empirical distributions, we seek to impute the true distributions associated with both observed and unobserved matrix entries. This is a generalization of traditional matrix completion where the observations per matrix entry are scalar valued. To do so, we utilize tools from optimal transport to generalize the nearest neighbors method to the distributional setting. Under a suitable latent factor model on probability distributions, we establish that our method recovers the distributions in the Wasserstein norm. We demonstrate through simulations that our method is able to (i) provide better distributional estimates for an entry compared to using observed samples for that entry alone, (ii) yield accurate estimates of distributional quantities such as standard deviation and value-at-risk, and (iii) inherently support heteroscedastic noise. We also prove novel asymptotic results for Wasserstein barycenters over one-dimensional distributions.
Abstract:Modern compression methods can summarize a target distribution $\mathbb{P}$ more succinctly than i.i.d. sampling but require access to a low-bias input sequence like a Markov chain converging quickly to $\mathbb{P}$. We introduce a new suite of compression methods suitable for compression with biased input sequences. Given $n$ points targeting the wrong distribution and quadratic time, Stein Kernel Thinning (SKT) returns $\sqrt{n}$ equal-weighted points with $\widetilde{O}(n^{-1/2})$ maximum mean discrepancy (MMD) to $\mathbb {P}$. For larger-scale compression tasks, Low-rank SKT achieves the same feat in sub-quadratic time using an adaptive low-rank debiasing procedure that may be of independent interest. For downstream tasks that support simplex or constant-preserving weights, Stein Recombination and Stein Cholesky achieve even greater parsimony, matching the guarantees of SKT with as few as $\operatorname{poly-log}(n)$ weighted points. Underlying these advances are new guarantees for the quality of simplex-weighted coresets, the spectral decay of kernel matrices, and the covering numbers of Stein kernel Hilbert spaces. In our experiments, our techniques provide succinct and accurate posterior summaries while overcoming biases due to burn-in, approximate Markov chain Monte Carlo, and tempering.
Abstract:The accurate evaluation of differential treatment in language models to specific groups is critical to ensuring a positive and safe user experience. An ideal evaluation should have the properties of being robust, extendable to new groups or attributes, and being able to capture biases that appear in typical usage (rather than just extreme, rare cases). Relatedly, bias evaluation should surface not only egregious biases but also ones that are subtle and commonplace, such as a likelihood for talking about appearances with regard to women. We present FairPair, an evaluation framework for assessing differential treatment that occurs during ordinary usage. FairPair operates through counterfactual pairs, but crucially, the paired continuations are grounded in the same demographic group, which ensures equivalent comparison. Additionally, unlike prior work, our method factors in the inherent variability that comes from the generation process itself by measuring the sampling variability. We present an evaluation of several commonly used generative models and a qualitative analysis that indicates a preference for discussing family and hobbies with regard to women.
Abstract:This article introduces a new framework for estimating average treatment effects under unobserved confounding in modern data-rich environments featuring large numbers of units and outcomes. The proposed estimator is doubly robust, combining outcome imputation, inverse probability weighting, and a novel cross-fitting procedure for matrix completion. We derive finite-sample and asymptotic guarantees, and show that the error of the new estimator converges to a mean-zero Gaussian distribution at a parametric rate. Simulation results demonstrate the practical relevance of the formal properties of the estimators analyzed in this article.
Abstract:There is a growing interest in using reinforcement learning (RL) to personalize sequences of treatments in digital health to support users in adopting healthier behaviors. Such sequential decision-making problems involve decisions about when to treat and how to treat based on the user's context (e.g., prior activity level, location, etc.). Online RL is a promising data-driven approach for this problem as it learns based on each user's historical responses and uses that knowledge to personalize these decisions. However, to decide whether the RL algorithm should be included in an ``optimized'' intervention for real-world deployment, we must assess the data evidence indicating that the RL algorithm is actually personalizing the treatments to its users. Due to the stochasticity in the RL algorithm, one may get a false impression that it is learning in certain states and using this learning to provide specific treatments. We use a working definition of personalization and introduce a resampling-based methodology for investigating whether the personalization exhibited by the RL algorithm is an artifact of the RL algorithm stochasticity. We illustrate our methodology with a case study by analyzing the data from a physical activity clinical trial called HeartSteps, which included the use of an online RL algorithm. We demonstrate how our approach enhances data-driven truth-in-advertising of algorithm personalization both across all users as well as within specific users in the study.
Abstract:Kernel two-sample testing provides a powerful framework for distinguishing any pair of distributions based on $n$ sample points. However, existing kernel tests either run in $n^2$ time or sacrifice undue power to improve runtime. To address these shortcomings, we introduce Compress Then Test (CTT), a new framework for high-powered kernel testing based on sample compression. CTT cheaply approximates an expensive test by compressing each $n$ point sample into a small but provably high-fidelity coreset. For standard kernels and subexponential distributions, CTT inherits the statistical behavior of a quadratic-time test -- recovering the same optimal detection boundary -- while running in near-linear time. We couple these advances with cheaper permutation testing, justified by new power analyses; improved time-vs.-quality guarantees for low-rank approximation; and a fast aggregation procedure for identifying especially discriminating kernels. In our experiments with real and simulated data, CTT and its extensions provide 20--200x speed-ups over state-of-the-art approximate MMD tests with no loss of power.
Abstract:In this technical note, we introduce an improved variant of nearest neighbors for counterfactual inference in panel data settings where multiple units are assigned multiple treatments over multiple time points, each sampled with constant probabilities. We call this estimator a doubly robust nearest neighbor estimator and provide a high probability non-asymptotic error bound for the mean parameter corresponding to each unit at each time. Our guarantee shows that the doubly robust estimator provides a (near-)quadratic improvement in the error compared to nearest neighbor estimators analyzed in prior work for these settings.