Robert
Abstract:The existing indoor fingerprinting localization methods are rather accurate after intensive offline calibration for a specific environment, no matter based on received signal strength (RSS) or channel state information (CSI), but the well-calibrated localization model (can be a pure statistical one or a data-driven one) will present poor generalization ability in the highly variable environments, which results in big loss in knowledge and human effort. To break the environment-specific localization bottleneck, we propose a new-fashioned data-driven fingerprinting method for localization based on model-agnostic meta-learning (MAML), named by MetaLoc. Specifically, MetaLoc is char acterized by rapldly adapting itself to a new, possibly unseen environment with very little calibration. The underlying localization model is taken to be a deep neural network, and we train an optimal set of environment-specific meta-parameters by leveraging previous data collected from diverse well-calibrated indoor environments and the maximum mean discrepancy criterion. We further modify the loss function of vanilla MAML and propose a novel framework named as MAML-DG, which is able to achieve faster convergence and better adaptation abilities by forcing the loss on different training domains to decrease in similar directions. Experiments from simulation and site survey confirm that the meta-parameters obtained for MetaLoc achieves very rapid adaptation to new environments, competitive localization accuracy, and high resistance to significantly reduced reference points (RPs), saving a lot of calibration effort.
Abstract:Data-driven paradigms are well-known and salient demands of future wireless communication. Empowered by big data and machine learning, next-generation data-driven communication systems will be intelligent with the characteristics of expressiveness, scalability, interpretability, and especially uncertainty modeling, which can confidently involve diversified latent demands and personalized services in the foreseeable future. In this paper, we review and present a promising family of nonparametric Bayesian machine learning methods, i.e., Gaussian processes (GPs), and their applications in wireless communication due to their interpretable learning ability with uncertainty. Specifically, we first envision three-level motivations of data-driven wireless communication using GPs. Then, we provide the background of the GP model in terms of covariance structure and model inference. The expressiveness of the GP model is introduced by using various interpretable kernel designs, namely, stationary, non-stationary, deep, and multi-task kernels. Furthermore, we review the distributed GP with promising scalability, which is suitable for applications in wireless networks with a large number of distributed edge devices. Finally, we provide representative solutions and promising techniques that adopting GPs in wireless communication systems.
Abstract:In this paper, we propose a new localization framework in which mobile users or smart agents can cooperate to build accurate location services without sacrificing privacy, in particular, information related to their trajectories. The proposed framework is called Federated Localization (FedLoc), simply because it adopts the recently proposed federated learning. Apart from the new FedLoc framework, this paper can be deemed as an overview paper, in which we review the state-of-the-art federated learning framework, two widely used learning models, various distributed model hyper-parameter optimization schemes, and some practical use cases that fall under the FedLoc framework. The use cases, summarized from a mixture of standard, recently published, and unpublished works, cover a broad range of location services, including collaborative static localization/fingerprinting, indoor target tracking, outdoor navigation using low-sampling GPS, and spatio-temporal wireless traffic data modeling and prediction. The obtained primary results confirm that the proposed FedLoc framework well suits data-driven, machine learning-based localization and spatio-temporal data modeling. Future research directions are discussed at the end of this paper.