Abstract:In this work, we investigate sensing parameter estimation in the presence of clutter in perceptive mobile networks (PMNs) that integrate radar sensing into mobile communications. Performing clutter suppression before sensing parameter estimation is generally desirable as the number of sensing parameters can be signiffcantly reduced. However, existing methods require high-complexity clutter mitigation and sensing parameter estimation, where clutter is ffrstly identiffed and then removed. In this correspondence, we propose a much simpler but more effective method by incorporating a clutter cancellation mechanism in formulating a sparse signal model for sensing parameter estimation. In particular, clutter mitigation is performed directly on the received signals and the unitary approximate message passing (UAMP) is leveraged to exploit the common support for sensing parameter estimation in the formulated sparse signal recovery problem. Simulation results show that, compared to state-of-theart methods, the proposed method delivers signiffcantly better performance while with substantially reduced complexity.
Abstract:Vegetation is the natural linkage connecting soil, atmosphere and water. It can represent the change of land cover to a certain extent and serve as an indicator for global change research. Methods for measuring coverage can be divided into two types: surface measurement and remote sensing. Because vegetation cover has significant spatial and temporal differentiation characteristics, remote sensing has become an important technical means to estimate vegetation coverage. This paper firstly uses U-net to perform remote sensing image semantic segmentation training, then uses the result of semantic segmentation, and then uses the integral progressive method to calculate the forestland change rate, and finally realizes automated valuation of woodland change rate.